Citation: | ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan. Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network[J]. Infrared Technology , 2021, 43(3): 251-257. |
[1] |
廖小华, 陈念年, 蒋勇, 等. 改进的卷积神经网络红外图像超分辨率算法[J]. 红外技术, 2020, 42(1): 075-80. http://hwjs.nvir.cn/article/id/hwjs202001011
LIAO Xiaohua, CHEN Niannian, JIANG Yong, et al. Infrared image super-resolution using improved convolutional neural network[J]. Infrared Technology, 2020, 42(1): 075-80. http://hwjs.nvir.cn/article/id/hwjs202001011
|
[2] |
田广强. 一种新颖高效的红外动态场景多目标检测跟踪[J]. 红外技术, 2018, 40(3): 259-263. http://hwjs.nvir.cn/article/id/hwjs201803010
TIAN Guangqiang. A novel algorithm for efficient multi-object detection and tracking for infrared dynamic frames[J]. Infrared Technology, 2018, 40(3): 259-263. http://hwjs.nvir.cn/article/id/hwjs201803010
|
[3] |
曾金发, 吴恩斯, 李能勇. 基于双核协同学习模型的红外目标跟踪算法[J]. 红外技术, 2018, 40(5): 438-443. http://hwjs.nvir.cn/article/id/hwjs201805006
ZENG Jinfa, WU Ensi, LI Nengyong. Infrared object-tracking algorithm based on dual-kernelized collaborative learning[J]. Infrared Technology, 2018, 40(5): 438-443. http://hwjs.nvir.cn/article/id/hwjs201805006
|
[4] |
韩团军, 尹继武. 一种鲁棒的自适应更新策略的弹载计算机红外目标跟踪算法[J]. 红外技术, 2018, 40(7): 625-631. http://hwjs.nvir.cn/article/id/hwjs201807001
HAN Tuanjun, YIN Jiwu. Robust adaptive updating strategy for missile-borne infrared object-tracking algorithm[J]. Infrared Technology, 2018, 40(7): 625-631 http://hwjs.nvir.cn/article/id/hwjs201807001
|
[5] |
艾志伟, 嵇建波, 李静, 等. 快速反射镜状态模型构建方法及其控制系统设计[J]. 红外技术, 2020, 42(1): 40-45. http://hwjs.nvir.cn/article/id/hwjs202001006
AI Zhiwei, JI Jianbo, LI Jing, et al. State model construction method for fast steering mirror and its control system design[J]. Infrared Technology, 2020, 42(1): 040-45. http://hwjs.nvir.cn/article/id/hwjs202001006
|
[6] |
DONG C, Loy C C, He K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision, 2014: 184-199.
|
[7] |
Riegler G, Rther M, Bischof H. ATGV-Net: accurate depth super resolution[C]//Proc. Eur. Conf. Comput. Vis., 2016: 268-284.
|
[8] |
SHI Y, LI S, LI W, et al. Fast and Lightweight Image Super-resolution based on dense residuals two-channel network[C]//2019 IEEE International Conference on Image Processing (ICIP), 2019: 2826-2830.
|
[9] |
WANG Wei, JIANG Yongbin, LUO Yanhong, et al. An advanced deep residual dense network(DRDN) approach for image super-resolution[J]. International Journal of Computational Intelligence Systems, 2019, 12(2): 1592-1601. DOI: 10.2991/ijcis.d.191209.001
|
[10] |
WU Y, JI X, JI W, et al. CASR: a context-aware residual network for single-image super-resolution[J]. Neural Computing and Applications, 2019: 1-16. DOI: 10.1007/s00521-019-04609-8%3Fshared-article-renderer
|
[11] |
杨明, 王璇, 高宏伟. 基于多级深度网络的高清晰度红外电子变倍算法[J]. 弹箭与制导学报, 2020, 40(4): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD202004004.htm
YANG Ming, WANG Xuan, GAO Hongwei. High-definition infrared electronic zooming algorithm based on multi-level deep network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(4): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD202004004.htm
|
[12] |
HUI T, Loy C C, TANG X. Depth map super-resolution by deep multi-scale guidance[C]//Proc. Eur. Conf. Comput. Vis., 2016: 353-369.
|
[13] |
QIU Y, WANG R, TAO D, et al. Embedded block residual network: a recursive restoration model for single-image super - resolution[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 4180-4189.
|
[14] |
CAO Y, HE Z, YE Z, et al. Fast and accurate single image super - resolution via an energy-aware improved deep residual network[J]. Signal Processing, 2019, 162: 115-125. DOI: 10.1016/j.sigpro.2019.03.018
|
[15] |
Anwar S, Barnes N. Densely residual Laplacian super-resolution[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence [2020-09-20](DOI: 10.1109/TPAMI.2020.3021088).
|
[16] |
WANG Z, Chen J, Hoi S C H. Deep learning for image super-resolution: a survey[J/OL]. IEEE Trans Pattern Anal Mach Intell.[2020-09-20]. https://ieeexplore.ieee.org/document/9185010 (doi: 10.1109/TPAMI.2020.2982166).
|
[17] |
LONG J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proc. Conf. Comput. Vis. Pattern Recognit, 2015: 3431-3440.
|
[18] |
HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on image net classification[C]//Proc. Int. Conf. Comput. Vis., 2015: 1026-1034.
|
[19] |
Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.
|
[20] |
HUI T W, Loy C C, TANG X. Depth map super-resolution by deep multi-scale guidance[C]//European Conference on Computer Vision, Springer, 2016: 353-369.
|
[21] |
Guei A C, Akhloufi M. Deep learning enhancement of infrared face images using generative adversarial networks[J]. Applied Optics, 2018, 57(18): 98-107. DOI: 10.1364/AO.57.000D98
|
[22] |
ZHANG X, LI C, MENG Q, et al. Infrared image super resolution by combining compressive sensing and deep learning[J]. Sensors, 2018, 18(8): 2587-2599. DOI: 10.3390/s18082587
|
[1] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[2] | HE Qiuhong, YU Wei, GUO Zhilin, YUAN Lianhai, LIU Yuying. No-reference Quality Evaluation Algorithm for Color Gamut Mapped Images Based on Double-Order Color Information[J]. Infrared Technology , 2025, 47(3): 316-325. |
[3] | BAI Hao, BAI Tingzhu. Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network[J]. Infrared Technology , 2024, 46(2): 176-182. |
[4] | DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128. |
[5] | KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981. |
[6] | DING Huabin, DING Qiwen. Fusion Algorithm of Infrared and Visible Images Based on Semantic Loss[J]. Infrared Technology , 2023, 45(9): 941-947. |
[7] | FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943. |
[8] | WANG Junyao, WANG Zhishe, WU Yuanyuan, CHEN Yanlin, SHAO Wenyu. Multi-Feature Adaptive Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2022, 44(6): 571-579. |
[9] | ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986. |
[10] | ZHANG Xiao, BAI Ting-zhu, LUO Xiao, HE Yu-qing. IR Image Mapping Based on Human Visual Gray-scale Properties[J]. Infrared Technology , 2008, 30(4): 225-229. DOI: 10.3969/j.issn.1001-8891.2008.04.011 |
1. |
王敷轩,庞珊. 基于多粒度跨模态特征增强的红外与可见光图像融合. 东莞理工学院学报. 2024(03): 32-37 .
![]() | |
2. |
李立,易诗,刘茜,程兴豪,王铖. 基于密集残差生成对抗网络的红外图像去模糊. 红外技术. 2024(06): 663-671 .
![]() | |
3. |
杨艳春,雷慧云,杨万轩. 基于快速联合双边滤波器和改进PCNN的红外与可见光图像融合. 红外技术. 2024(08): 892-901 .
![]() | |
4. |
陈广秋,温奇璋,尹文卿,段锦,黄丹丹. 用于红外与可见光图像融合的注意力残差密集融合网络. 电子测量与仪器学报. 2023(08): 182-193 .
![]() |