ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan. Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network[J]. Infrared Technology , 2021, 43(3): 251-257.
Citation: ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan. Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network[J]. Infrared Technology , 2021, 43(3): 251-257.

Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network

More Information
  • Received Date: May 18, 2019
  • Revised Date: March 22, 2020
  • Existing infrared-guided weapons heavily rely on operators to acquire targets, and the accuracy of acquisition is positively correlated with a target's texture details. To improve the display quality of weak small regions and meet the design requirements of miniaturization, modularization, and low-cost seekers, an image super-resolution(SR) reconstruction algorithm based on a pyramid dense residual network is proposed. The dense residual network is the basic framework of the proposed model. Through the dense connection layer and the residual network, the model can learn the non-linear mapping between images of different scales, and the multi-scale feature can be used to predict the high-frequency residual. In addition, using the deep supervision module to guide network training is conducive to the realization of SR reconstruction with a larger upper-sampling factor and improvements to its generalization ability. A large number of simulation results show that our proposed model outperforms comparison algorithms and that it has a high engineering application value.
  • [1]
    廖小华, 陈念年, 蒋勇, 等. 改进的卷积神经网络红外图像超分辨率算法[J]. 红外技术, 2020, 42(1): 075-80. http://hwjs.nvir.cn/article/id/hwjs202001011

    LIAO Xiaohua, CHEN Niannian, JIANG Yong, et al. Infrared image super-resolution using improved convolutional neural network[J]. Infrared Technology, 2020, 42(1): 075-80. http://hwjs.nvir.cn/article/id/hwjs202001011
    [2]
    田广强. 一种新颖高效的红外动态场景多目标检测跟踪[J]. 红外技术, 2018, 40(3): 259-263. http://hwjs.nvir.cn/article/id/hwjs201803010

    TIAN Guangqiang. A novel algorithm for efficient multi-object detection and tracking for infrared dynamic frames[J]. Infrared Technology, 2018, 40(3): 259-263. http://hwjs.nvir.cn/article/id/hwjs201803010
    [3]
    曾金发, 吴恩斯, 李能勇. 基于双核协同学习模型的红外目标跟踪算法[J]. 红外技术, 2018, 40(5): 438-443. http://hwjs.nvir.cn/article/id/hwjs201805006

    ZENG Jinfa, WU Ensi, LI Nengyong. Infrared object-tracking algorithm based on dual-kernelized collaborative learning[J]. Infrared Technology, 2018, 40(5): 438-443. http://hwjs.nvir.cn/article/id/hwjs201805006
    [4]
    韩团军, 尹继武. 一种鲁棒的自适应更新策略的弹载计算机红外目标跟踪算法[J]. 红外技术, 2018, 40(7): 625-631. http://hwjs.nvir.cn/article/id/hwjs201807001

    HAN Tuanjun, YIN Jiwu. Robust adaptive updating strategy for missile-borne infrared object-tracking algorithm[J]. Infrared Technology, 2018, 40(7): 625-631 http://hwjs.nvir.cn/article/id/hwjs201807001
    [5]
    艾志伟, 嵇建波, 李静, 等. 快速反射镜状态模型构建方法及其控制系统设计[J]. 红外技术, 2020, 42(1): 40-45. http://hwjs.nvir.cn/article/id/hwjs202001006

    AI Zhiwei, JI Jianbo, LI Jing, et al. State model construction method for fast steering mirror and its control system design[J]. Infrared Technology, 2020, 42(1): 040-45. http://hwjs.nvir.cn/article/id/hwjs202001006
    [6]
    DONG C, Loy C C, He K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision, 2014: 184-199.
    [7]
    Riegler G, Rther M, Bischof H. ATGV-Net: accurate depth super resolution[C]//Proc. Eur. Conf. Comput. Vis., 2016: 268-284.
    [8]
    SHI Y, LI S, LI W, et al. Fast and Lightweight Image Super-resolution based on dense residuals two-channel network[C]//2019 IEEE International Conference on Image Processing (ICIP), 2019: 2826-2830.
    [9]
    WANG Wei, JIANG Yongbin, LUO Yanhong, et al. An advanced deep residual dense network(DRDN) approach for image super-resolution[J]. International Journal of Computational Intelligence Systems, 2019, 12(2): 1592-1601. DOI: 10.2991/ijcis.d.191209.001
    [10]
    WU Y, JI X, JI W, et al. CASR: a context-aware residual network for single-image super-resolution[J]. Neural Computing and Applications, 2019: 1-16. DOI: 10.1007/s00521-019-04609-8%3Fshared-article-renderer
    [11]
    杨明, 王璇, 高宏伟. 基于多级深度网络的高清晰度红外电子变倍算法[J]. 弹箭与制导学报, 2020, 40(4): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD202004004.htm

    YANG Ming, WANG Xuan, GAO Hongwei. High-definition infrared electronic zooming algorithm based on multi-level deep network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(4): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD202004004.htm
    [12]
    HUI T, Loy C C, TANG X. Depth map super-resolution by deep multi-scale guidance[C]//Proc. Eur. Conf. Comput. Vis., 2016: 353-369.
    [13]
    QIU Y, WANG R, TAO D, et al. Embedded block residual network: a recursive restoration model for single-image super - resolution[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 4180-4189.
    [14]
    CAO Y, HE Z, YE Z, et al. Fast and accurate single image super - resolution via an energy-aware improved deep residual network[J]. Signal Processing, 2019, 162: 115-125. DOI: 10.1016/j.sigpro.2019.03.018
    [15]
    Anwar S, Barnes N. Densely residual Laplacian super-resolution[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence [2020-09-20](DOI: 10.1109/TPAMI.2020.3021088).
    [16]
    WANG Z, Chen J, Hoi S C H. Deep learning for image super-resolution: a survey[J/OL]. IEEE Trans Pattern Anal Mach Intell.[2020-09-20]. https://ieeexplore.ieee.org/document/9185010 (doi: 10.1109/TPAMI.2020.2982166).
    [17]
    LONG J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proc. Conf. Comput. Vis. Pattern Recognit, 2015: 3431-3440.
    [18]
    HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on image net classification[C]//Proc. Int. Conf. Comput. Vis., 2015: 1026-1034.
    [19]
    Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.
    [20]
    HUI T W, Loy C C, TANG X. Depth map super-resolution by deep multi-scale guidance[C]//European Conference on Computer Vision, Springer, 2016: 353-369.
    [21]
    Guei A C, Akhloufi M. Deep learning enhancement of infrared face images using generative adversarial networks[J]. Applied Optics, 2018, 57(18): 98-107. DOI: 10.1364/AO.57.000D98
    [22]
    ZHANG X, LI C, MENG Q, et al. Infrared image super resolution by combining compressive sensing and deep learning[J]. Sensors, 2018, 18(8): 2587-2599. DOI: 10.3390/s18082587
  • Related Articles

    [1]ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366.
    [2]HE Qiuhong, YU Wei, GUO Zhilin, YUAN Lianhai, LIU Yuying. No-reference Quality Evaluation Algorithm for Color Gamut Mapped Images Based on Double-Order Color Information[J]. Infrared Technology , 2025, 47(3): 316-325.
    [3]BAI Hao, BAI Tingzhu. Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network[J]. Infrared Technology , 2024, 46(2): 176-182.
    [4]DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128.
    [5]KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981.
    [6]DING Huabin, DING Qiwen. Fusion Algorithm of Infrared and Visible Images Based on Semantic Loss[J]. Infrared Technology , 2023, 45(9): 941-947.
    [7]FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943.
    [8]WANG Junyao, WANG Zhishe, WU Yuanyuan, CHEN Yanlin, SHAO Wenyu. Multi-Feature Adaptive Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2022, 44(6): 571-579.
    [9]ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986.
    [10]ZHANG Xiao, BAI Ting-zhu, LUO Xiao, HE Yu-qing. IR Image Mapping Based on Human Visual Gray-scale Properties[J]. Infrared Technology , 2008, 30(4): 225-229. DOI: 10.3969/j.issn.1001-8891.2008.04.011
  • Cited by

    Periodical cited type(4)

    1. 王敷轩,庞珊. 基于多粒度跨模态特征增强的红外与可见光图像融合. 东莞理工学院学报. 2024(03): 32-37 .
    2. 李立,易诗,刘茜,程兴豪,王铖. 基于密集残差生成对抗网络的红外图像去模糊. 红外技术. 2024(06): 663-671 . 本站查看
    3. 杨艳春,雷慧云,杨万轩. 基于快速联合双边滤波器和改进PCNN的红外与可见光图像融合. 红外技术. 2024(08): 892-901 . 本站查看
    4. 陈广秋,温奇璋,尹文卿,段锦,黄丹丹. 用于红外与可见光图像融合的注意力残差密集融合网络. 电子测量与仪器学报. 2023(08): 182-193 .

    Other cited types(4)

Catalog

    Article views (612) PDF downloads (66) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return