Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Display Method:
Survey & Review
Choice of European Super Second Generation Image Intensifier Technology and its Further Development
LI Xiaofeng, HE Yanbin, XU Chuanping, LI Jinsha, ZHANG Qindong
2022, 44(12): 1249-1263.  
Abstract HTML(0) PDF(0)
Abstract:
The second-generation image intensifier adopts a Na2KSb photocathode, whereas the third-generation image intensifier adopts a GaAs photocathode. Given that GaAs photocathodes have a higher cathode sensitivity, the performance of the third-generation image intensifier is much higher than that of the second-generation image intensifier. The super second-generation image intensifier, developed on the basis of the second-generation image intensifier, has been greatly improved in terms of cathode sensitivity, and thus, its performance has also been greatly improved. Simultaneously, the gap with the third-generation image intensifier has been significantly shortened. Super second-generation image intensifiers belong to the material technology of Na2KSb, with low production cost and high cost performance compared with those of third-generation image intensifiers. Therefore, European image intensifier manufacturers chose the development roadmap for super second-generation image intensifiers. Super second- and third-generation image intensifier technologies have been developed in parallel for more than 30 years, and their performance has been greatly improved. The performance gap between super second- and third-generation image intensifiers is primarily reflected under conditions of extremely low illumination (<10−4 lx); the performance remains basically unchanged for levels above that. The performance of super-second-generation image intensifiers can still be improved. In terms of the gain, they can be improved by depositing a film of high secondary electron emission material on the inner wall of the microchannel plate. With respect to the signal-to-noise ratio, the grating window was introduced to improve the cathode sensitivity, thereby improving the signal-to-noise ratio. The resolution can be improved by inserting a semiconductor film at the output of the microchannel plate and adopting a high-definition fluorescent screen. Cathode sensitivity is a parameter of the photocathode components and not the overall performance parameter of the image intensifier. The influence of the cathode sensitivity on the overall performance of the image intensifier is embodied in the gain, signal-to-noise ratio, and equivalent background illumination. Different models are employed to distinguish between super second- and third-generation image intensifiers. These models give rise to different levels of performance. The performance parameters of super second- and third-generation image intensifiers are measured under the condition of a light source, but the spectral distribution in the actual application environment is not the same as that of the light source. The spectral responses of Na2KSb and GaAs photocathodes are different. Therefore, performance parameters such as signal-to-noise ratio and resolution of the super-second-generation and third-generation image intensifiers are not comparable.
Systems & Designs
Calibration Between Sparse LIDAR and Visible/Infrared Imaging Systems
LIU Yu, CAI Yi, RONG Ningtao, ZHOU Yunyang, WANG Lingxue
2022, 44(12): 1264-1272.  
Abstract HTML(0) PDF(0)
Abstract:
Pose estimation between LIDAR and imaging system is the prerequisite for the data fusion. Among current mainstream off-line calibration methods, common checkerboard is generally effective for 64-line and above LIDAR, but not for 16-line LIDAR due to its sparse data and will lead to large error. Furthermore, when involving calibration of infrared imaging system, specially-made checkerboard is needed to produce difference of emissivity. Aiming at the problem of less information provided by sparse LIDARs, we propose a new calibration method that can jointly calibrate LIDAR and visible/infrared imaging systems. A novel diamond-shaped nine-hole calibration board is designed, and a geometric constraint loss function is proposed to optimize the coordinates of feature points. Finally, the infrared and visible light imaging systems are used respectively, to calibrate with 16-line LIDAR. Good results are achieved and show that, all the average reprojection error is within 3 pixels. The proposed method can also be used in calibration of multi-band imaging systems that include sparse LIDAR, visible imaging system and infrared imaging system.
Analysis and Example of Operating Range Calculation Method for Point Target in Infrared System
ZHAO Li, YANG Guoqing, LI Zhou, CUI Tiecheng
2022, 44(12): 1273-1277.  
Abstract HTML(0) PDF(0)
Abstract:
The operating range parameter of an infrared system is an important index for characterizing its imaging performance. At present, there are many methods to calculate the operating distance of infrared systems, but they all have their own applicability and limitations. It is necessary to consider the influence of various factors on the operating distance under different conditions. In this study, based on the detection energy, noise equivalent temperature difference (NETD), and contrast, we found limitations under different conditions. When the observation target was a human, the calculated operating distance based on the NETD model was 8.74 km, which is closer to field experimental data. When the observation target was an aircraft, the calculated operating distance based on the energy model was 32.04 km, which is also closer to field experimental data. These results show that, according to the different characteristics of the target, selecting the appropriate calculation method for the operating distance is helpful in improving the accuracy of the system operating distance estimation.
Optical System Design of Suspended Infrared Night Vision Based on Low Light Level Helmet Observation
SUN Aiping, HU Jianchuan, AN Changliang, LI Xunniu, WANG Chenyue, GONG Yangyun, SONG Yuyu
2022, 44(12): 1278-1286.  
Abstract HTML(0) PDF(0)
Abstract:
Helmet night vision systems are developed from single-band to multi-band image fusion. In this study, we analyzed the technical program and image registration accuracy based on low-light-level helmet observation and a hanging infrared night vision device. Optical simulation analysis was also conducted. First, we analyzed the working mode of the combination of hanging infrared night vision and low-light-level helmet, as well as the design scheme of image rotation and circular field of view. Second, according to the design index of hanging infrared night vision, optical simulation of an infrared lens and projection lens was carried out. Third, the image registration accuracy was analyzed from three viewpoints: suspension accuracy, optical axis consistency, and distortion. Finally, according to the simulation results and image registration accuracy analysis, a technical scheme based on low-light-level helmet observation and suspended infrared night vision is feasible and can achieve the targeted effect.
Ergonomic Analysis of Pilot's Night Vision Goggles in Operational Use and Performance Improvement
YUAN Youzhi, SONG Jianhua, DONG Baogen, HOU Zhigang, WANG Shiwei, YANG Moyuan, ZHANG Dan
2022, 44(12): 1287-1292.  
Abstract HTML(0) PDF(0)
Abstract:
Pilots' night vision goggles will play an increasingly important role in future night air combats. However, wearing night vision goggles will also lead to many safety and ergonomic problems. To ensure the flight safety of pilots wearing night vision goggles and to improve night vision combat effectiveness, it is important to enhance the ergonomics of pilots' night vision goggles. This study analyzes the typical ergonomic problems of pilots when they use night vision goggles and provides suggestions for efficiency improvement from three viewpoints: performance enhancement of night vision goggles, personnel training, and use of environment and opportunity. We provide a feasible solution to improve the safety, efficiency, and comfort of pilots wearing night vision goggles.
Image Processing & Simulation
Infrared and Visible Image Fusion Based on Transform Domain VGGNet19
LI Yongping, YANG Yanchun, DANG Jianwu, WANG Yangping
2022, 44(12): 1293-1300.  
Abstract HTML(0) PDF(0)
Abstract:
To address the problems of loss of detailed information and blurred edges in the fusion of infrared and visible images, an infrared and visible image fusion method through the VGGNet19 network in the transform domain is proposed. Firstly, in order to extract more accurate basic and detailed data from the source images during the decomposition process, the source images are decomposed using a multi-scale guided filter with edge-preserving smoothing function into a base layer and multiple detailed layers. Then, the Laplacian energy with the characteristics of retaining the main energy information is used to fuse the basic layer to obtain the basic fusion map. Subsequently, to prevent the fusion result from losing some detailed edge information, the VGGNet19 network is used to extract the features of the detail layers, L1 regularization, upsampling and final weighted average, thus the fused detail. Finally, the final fusion is obtained by adding two fusion graphs. The experimental results show that the method proposed can better extract the edge and detailed information in the source images, and achieve better results in terms of both subjective and objective evaluation indicators.
High-precision Template Matching Tracking Algorithm for Optoelectronic Tracking System
WU Hao, ZHANG Yong, LI Xin, SI Minghua, WANG Weiming
2022, 44(12): 1301-1308.  
Abstract HTML(0) PDF(0)
Abstract:
To achieve high-precision measurements under the operating conditions of optoelectronic tracking systems and satisfy high-precision target matching in complex environments, in this study we adopted the average normalized cross-correlation algorithm. To improve the matching speed and real-time tracking, the computational complexity was simplified by using the sum table method to correlate the sum of images, squares, and the correlation of images. The wavelet pyramid method was used as the search strategy, and the center of the template was used as the reference point for cross-shaped search. A termination threshold was introduced, which reduced the number of mismatched points to increase the search speed. To verify the effectiveness of the algorithm, an optoelectronic tracking system was placed on a two-dimensional turntable in an experiment that used the algorithm to track a target. The experimental results show that the missed target was controlled within 3 pixels. The proposed algorithm can realize high-precision and stable tracking in optoelectronic tracking systems.
Infrared Image Enhancement Based on Adaptive Bilateral Filtering and Directional Gradient
NIE Fengying, HOU Lixia, WAN Liyong
2022, 44(12): 1309-1315.  
Abstract HTML(0) PDF(0)
Abstract:
To overcome the defects of existing infrared image enhancement methods, such as under-enhancement, over-enhancement, and low contrast, an infrared image enhancement method based on adaptive bilateral filtering and directional gradient is proposed. The bilateral filter was improved, and its weighting coefficient is now adaptive to smooth and detailed regions. The improved bilateral filter is used as the central surround function of Retinex to decompose the infrared image into a base layer and a detail layer. Using improved platform histogram equalization, the base layer image is enhanced, and a directional gradient operator is proposed to extract the gradient image of the detail layer image to perform nonlinear adaptive edge enhancement on the detail-layer image. Experimental results show that, compared with existing methods, the proposed method can improve the brightness and contrast of infrared images more effectively. In addition, the visual effect of enhanced images using this method is better.
Research on Crowd Abnormal Behavior Detection Based on Improved SSD
KANG Jie, TIAN Ye, YANG Gang
2022, 44(12): 1316-1323.  
Abstract HTML(0) PDF(0)
Abstract:
Aiming at the problems of high algorithmic complexity and low detection accuracy caused by overlapping occlusions in abnormal crowd behavior detection, this paper proposes an algorithm for crowd abnormal behavior detection based on an improved single-shot multi-box detector(SSD). First, the lightweight network MobileNet v2 was used to replace the original feature extraction network VGG-16, and a convolutional layer was constructed by a deformable convolution module to enhance the receptive field. Feature enhancement was performed by integrating the position information into the channel attention, which can capture long-range dependencies between spatial locations, allowing for better handling of overlapping occlusions. The experimental results show that the proposed algorithm has a good detection effect on abnormal crowd behavior.
An Infrared Image Detail Enhancement Algorithm Based on Parameter Adaptive Guided Filtering
OUYANG Huiming, XIA Likun, LI Zemin, HE Yan, ZHU Xiaojie, ZHU Youpan, ZENG Bangze, ZHOU Yongkang
2022, 44(12): 1324-1331.  
Abstract HTML(0) PDF(0)
Abstract:
Of all the image layered filters, guided filter has been widely studied and applied in the field of infrared image detail enhancement because of its good edge preserving effect and low computational complexity. However, traditional fixed regularization parameter ε of the guide filter cannot achieve good filtering layering effect in all scenarios. Therefore, an adaptive algorithm of parameter ε based on local variance is proposed in this paper to improve the adaptability of the guide filter in all scenarios. In addition, an improved detail layer adaptive enhancement algorithm based on noise mask function is proposed by using the adaptive parameter ε value, which can effectively suppress the noise level and improve the detail enhancement ability of the algorithm in different scenes.
Materials & Devices
Study on Dual-Fluid Spray Cleaning Technique for Single-wafer Particle Removal
LIU Baihong, YANG Weiping, LIANG Xiang, YANG Lili, DU Haonan, BAO Jiabing, SHI Chunming, MA Yuexia, YIN Yane, DUAN Yu
2022, 44(12): 1332-1337.  
Abstract HTML(0) PDF(0)
Abstract:
The particle removal efficiency (PRE) of single-wafer substrates using dual-fluid spray-cleaning technology was investigated. The ratio displacement-diameter(H/D), which is dimensionless, is introduced to discuss the effect of PRE on a single-wafer surface. In addition, the effects of spray time and nozzle injection pressure on PRE are discussed. The results show that increasing the spray time and nozzle injection pressure can increase PRE. The highest PRE occurred when the displacement-diameter ratio was close to 1. When the ratio was less than 1, the PRE increased with an increase in the displacement–diameter ratio. When the ratio was greater than 1, the partial area of the wafer surface was not washed, and the PRE decreased rapidly with an increase in the ratio. The dual-fluid spray-cleaning method can achieve more than 99% PRE for particle sizes between 0.2 μm and 0.3 μm and more than 96% PRE for particle sizes between 0.1 μm and 0.5 μm.
Nondestructive Testing
Study on Ultrasonic Guided Wave Propagation Characteristics and Damage Imaging for Composite Structures Under Variable Temperature Field
WANG Changlin, REN Li, ZHONG Yongteng
2022, 44(12): 1338-1343.  
Abstract HTML(0) PDF(0)
Abstract:
The Lamb-wave-based damage location method has been widely used for health monitoring of composite structures. However, it is easily interfered by external factors because its service environment is complex and changeable. To determine the influence of the temperature field on the propagation of Lamb waves in composite structures, in this study we first investigated the propagation characteristics of ultrasonic guided waves on glass fiber laminates under a temperature field using an infrared thermal imager. Subsequently, a corrected model was established using the extracted amplitude attenuation and phase delay errors. Consequently, a modified multiple signal classification(2D-MUSIC) algorithm-based damage imaging method is proposed for composite structures. The experimental results on glass fiber composite laminates show that the proposed method can effectively improve the resolution and accuracy of the original algorithm under a variable temperature field.
Ir Applications
Multi-scale Guided Filter and Decision Fusion for Thermal Fault Diagnosis of Power Equipment
LIANG Jian, HUANG Zhihong, ZHANG Keren
2022, 44(12): 1344-1350.  
Abstract HTML(0) PDF(0)
Abstract:
This paper introduces a thermal fault diagnosis method called multi-scale guided filtering and decision fusion. The proposed method combines multiscale guided filtering and decision-fusion techniques for fault diagnosis. It comprises three main steps. First, the Mahalanobis distance between the fault area and background is estimated, and initial thermal fault diagnosis results are generated. The initial diagnosis result is then filtered using guided filtering with various parameters, and several filtering feature maps are generated. Different filtering feature maps contain complementary spatial-structure information. Finally, a principal component analysis algorithm fuses these filtering feature maps to capture their spatial structure information and thermal information in filtering feature maps. Experimental results show that the proposed diagnosis method has a better detection performance than the current state-of-the-art detectors.
Deep Residual UNet Network-based Infrared Image Segmentation Method for Electrical Equipment
LIU He, ZHAO Tiancheng, LIU Junbo, JIAO Lixin, XU Zhihao, YUAN Xiaocui
2022, 44(12): 1351-1357.  
Abstract HTML(0) PDF(0)
Abstract:
Infrared thermal image processing is an effective method for detecting defects in electrical equipment. Aiming at the problem of electrical equipment segmentation in infrared thermal images with a complex background, in this study we propose a deep residual UNet network for infrared thermal image segmentation. Using a deep residual network to replace VGG16 to perform feature extraction and coding for the UNet network, a deep residual series UNET network was constructed to segment electrical equipment. To validate the effectiveness of the Res-UNet network, infrared images, including current transformers and circuit breakers, were used to test the segmentation results and were compared with the traditional UNet and Deeplabv3+ networks. The networks were tested using 876 images. The experimental results show that RES18-UNET can accurately segment electrical equipment; the segmentation precision of current transformers and circuit breakers is greater than 93%, and the mean intersection over union (MIoU) is greater than 89%. Our method obtains more accurate segmentation results than UNet and Deeplabv3+, setting the basis for intelligent diagnosis of electrical faults.
Research on Calculation of Defect Area of Building Exterior Windows Based on Infrared Image Processing Technology
ZHANG Lingling, XU Ao, ZHANG Jiran, REN Panpan, DING Libin, WEI Daixiao
2022, 44(12): 1358-1366.  
Abstract HTML(0) PDF(0)
Abstract:
A method for defect detection and area calculation of exterior windows of buildings is proposed by combining infrared thermal imaging technology and image processing technology. Using equipment for detection of building exterior window defects, the differential-pressure method was utilized to detect the air penetration of an exterior window, and the defective area of the air penetration of this window was calculated. Infrared images of the exterior window of the building collected by an infrared thermal imager were subjected to image preprocessing, exterior window defect detection, and area calculation after inspection. Then, an infrared-image detection model of exterior window defects was established. The results show that preprocessing can make use of the weighted average method for grayscale processing, the median filter for noise reduction, image sharpening, and histogram equalization for image enhancement processing. The outcome of the aforementioned approaches is evident. The detection of the pretreatment infrared image, which is obtained using the Roberts algorithm, minimizes the difference between the test and experimental values. This makes the detection information closer to the actual position of the defect. A primary assessment of the airtightness performance level of exterior windows can be achieved by comparing the results provided by the proposed infrared image processing technology with airtightness on-site tests.
Research Development of Infrared Stealth Materials
SHEN Yulian, LI Chunhai, GUO Shaoyun, CHEN Rong
2021, 43(4): 312-323.  
[Abstract](636) [FullText HTML](237) [PDF 1128KB](237)
摘要:
随着红外探测技术的迅速发展,如何提高军事目标的红外隐身能力成为一个亟待解决的难题,研究红外隐身材料有着十分重要的意义。本文简要分析了红外隐身材料的隐身机理,综述了低红外发射率材料、控温材料、光子晶体以及智能红外隐身材料等4类红外隐身材料近年来的研究现状,并展望了红外隐身材料未来的发展趋势。
Present State and Perspectives of Small Infrared Targets Detection Technology
HOU Wang, SUN Xiao-liang, SHANG Yang, YU Qi-feng
2015, 37(1): 1-10.  
[Abstract](517) [PDF 2162KB](84)
摘要:
在一些关键的军事和民用红外成像应用领域,待突破的技术瓶颈往往都集中在红外弱小目标检测技术上.简介了红外弱小目标检测的含义和在军事、民用方面的意义,重点综述了目前红外弱小目标检测的各类典型算法原理和特点,最后对红外弱小目标检测技术的研究和发展趋势进行了预测.
Uncooled Infrared FPA--A Review and Forecast
FENG Tao, JIN Wei-qi, SI Jun-jie
2015, (3): 177-184.  
[Abstract](843) [PDF 1085KB](61)
摘要:
非制冷红外焦平面探测器是热成像系统的核心部件。介绍了非制冷红外焦平面探测器的工作原理及微测辐射热计、读出电路、真空封装三大技术模块,分析了影响其性能的关键参数。与微测辐射热计设计相关的重要参数包括低的热导、高的红外吸收率、合适的热敏材料等;读出电路的传统功能是实现信号的转换读出,近年来也逐渐加入了信号补偿的功能;真空封装技术包括了金属管壳封装、陶瓷管壳封装、晶圆级封装和像元级封装。列举了国内外主要厂商的非制冷红外焦平面探测器的技术指标及近年来的最新技术进展,总结了非制冷红外焦平面探测器的技术发展趋势。
Research on Influence Factors for Measuring and Method of Correction in Infrared Thermometer
LIAO Panpan, ZHANG Jiamin
2017, 39(2): 173-177.  
[Abstract](275) [PDF 1228KB](40)
摘要:
为了减少红外测温仪的测量误差,提高红外测温仪的测温精度,分析了距离、发射率和外界环境温度等因素对红外测温仪测温的影响;建立了红外测温实验系统采集测温数据,并对采集到的实验数据进行了分析验证,通过分析验证可得距离因素对红外辐射测温精度有较大的影响,并且存在一定的关系,从而为提高红外测温精度的提供了依据;设计了一套提高红外测温仪测量精度的系统,该系统能够测出被测物与红外测温仪之间的距离,根据测出的结果得到距离补偿公式,然后依据公式得出温度的距离补偿,从而得到物体的实际温度.最后分析可得,红外测温仪的测量精度能够大幅提高.
Infrared Thermography NDT and Its Development
ZHENG Kai, JIANG Haijun, CHEN Li
2018, 40(5): 401-411.  
[Abstract](222) [PDF 1575KB](24)
摘要:
红外热波成像是近年来发展较快的一种新型无损检测技术,它是一门跨学科、跨应用领域的通用型实用技术,其三大核心技术包括热激励、红外图像采集及红外图像处理.本文对热激励技术中的闪光灯、激光、卤素灯、红外灯、超声、电磁等几种主要热激励方法的特点及研究现状进行了介绍与对比,分析了采集技术中的制冷与非制冷热像仪各自特点,并对红外图像处理技术中的降噪、增强、序列热图处理及缺陷提取等四大研究方向进行了总结,介绍了相应发展状况和进展.最后总结了该技术的发展趋势.
Developments of High Performance Short-wave Infrared InGaAs Focal Plane Detectors
SHAO Xiumei, GONG Haimei, LI Xue, FANG Jiaxiong, TANG Hengjing, LI Tao, HUANG Songlei, HUANG Zhangchen
2016, 38(8): 629-635.  
[Abstract](369) [PDF 900KB](34)
摘要:
中科院上海技物所近十年来开展了高性能短波红外 InGaAs 焦平面探测器的研究。0.9~1.7?m近红外 InGaAs 焦平面探测器已实现了256×1、512×1、1024×1等多种线列规格,以及320×256、640×512、4000×128等面阵,室温暗电流密度<5 nA/cm2,室温峰值探测率优于5×1012 cm?Hz1/2/W。同时,开展了向可见波段拓展的320×256焦平面探测器研究,光谱范围0.5~1.7?m,在0.8?m 的量子效率约20%,在1.0?m 的量子效率约45%。针对高光谱应用需求,上海技物所开展了1.0~2.5?m 短波红外 InGaAs 探测器研究,暗电流密度小于10 nA/cm2@200 K,形成了512×256、1024×128等多规格探测器,峰值量子效率高于75%,峰值探测率优于5×1011 cm?Hz1/2/W。
Infrared Image Detail Enhancement Algorithm Based on Hierarchical Processing by Guided Image Filter
GE Peng, YANG Bo, HAN Qinglin, LIU Peng, CHEN Shugang, HU Douming, ZHANG Qiaoyan
2018, 40(12): 1161-1169.  
[Abstract](182) [PDF 2514KB](28)
摘要:
为了解决高动态红外图像在常规显示设备上显示时容易出现图像整体对比度低、弱小目标细节模糊等问题,提出了一种基于引导滤波图像分层的红外图像细节增强算法,并从算法理论分析和仿真结果两方面验证了引导滤波具有更好的边缘保持能力,能有效避免增强后出现"伪边缘"的缺陷.另外,针对原始全局的引导滤波算法对整幅图像各个区域使用相同的规整化因子,容易产生"光晕"现象的缺陷,本文在局部方差加权引导滤波算法的思想上,提出了基于LoG边缘算子的加权引导滤波算法.实验结果表明本文算法具有良好的细节增强效果,特别是对图像中的弱小目标;另外,相比目前应用广泛的双边滤波算法,本文算法运行时间要快得多,具有实时处理的应用前景.
Read Out Integrated Circuit for Third-Generation Infrared Focal Plane Detector
BAI Pi-ji, YAO Li-bin
2015, (2): 89-96.  
[Abstract](735) [PDF 738KB](62)
摘要:
对红外探测器不断增长和提高的需求催生了第三代红外焦平面探测器技术。根据第三代红外探测器的概念,像素达到百万级,热灵敏度NETD达到1 mK量级是第三代制冷型高性能红外焦平面探测器的基本特征。计算结果表明读出电路需要达到1000 Me-以上的电荷处理能力和100 dB左右的动态范围(Dynamic Range)才能满足上述第三代红外焦平面探测器需求。提出在像素内进行数字积分技术,以期突破传统模拟读出电路的电荷存储量和动态范围瓶颈限制,使高空间分辨率、高温度分辨率及高帧频的第三代高性能制冷型红外焦平面探测器得到实现。
Infrared Image Denoising Method Based on Improved Non-local Means Filter
GUO Chenlong, ZHAO Xuyang, ZHENG Haiyan, LIANG Xining
2018, 40(7): 638-641.  
[Abstract](81) [PDF 982KB](12)
摘要:
提出了一种基于梯度信息的结构相似性算法改进的红外图像非局部均值滤波方法.传统的非局部均值滤波算法采用欧氏距离度量图像块之间的相似性,因而不能够很好地衡量图像细节和边缘信息,导致滤波后图像模糊失真.针对此问题,采用结构相似性度量(structural similarity,SSIM)算法对欧氏距离进行加权改进,针对普通的SSIM边缘信息评价能力的不足,提出了带有梯度信息的GSSIM算法,实验结果表明本方法在保持非局部均值(Non-Local Means,NLM)滤波算法去噪能力的同时还能够较好地保持图像的边缘和细节信息.
The Research Review of the Infrared Imaging Technology in the Field of Traditional Chinese Medicine
WANG Yuting, DENG Pin, LI Hongjuan
2017, 39(1): 14-21.  
[Abstract](136) [PDF 627KB](20)
摘要:
检索中国科技期刊近5年已发表的红外热成像检测技术在中医领域的研究文献51篇,从红外成像检测在辅助中医诊断、指导临床治疗与疗效评估,以及对中医基础理论的研究等方面,陈述红外热成像技术在中医领域目前研究现状,分析其在中医领域应用的优势特点,并对未来研究方向提出建议.
Research Progress and Application of Polarization Imaging Technology
ZHOU Qiangguo, HUANG Zhiming, ZHOU Wei
2021, 43(9): 817-828.  
[Abstract](1103) [FullText HTML](253) [PDF 1293KB](253)
Abstract:
The advantage of polarization imaging technology is that it expands the amount of information from three degrees of freedom, namely light intensity, spectrum, and space, to seven degrees of freedom, including light intensity, spectrum, space, degree of polarization, polarization azimuth, polarization ellipticity, and direction of rotation. This richness of observational information is conducive to improving the accuracy of research target detection. This article first introduces the research progress of polarization imaging technology at home and abroad in recent decades, then introduces the typical applications of polarization technology in military and civilian fields, and finally provides reasonable suggestions on the problems of polarization imaging technology in our country.
Review of Infrared Image Edge Detection Algorithms
HE Qian, LIU Boyun
2021, 43(3): 199-207.  
[Abstract](606) [FullText HTML](391) [PDF 758KB](391)
Abstract:
To ensure that researchers are well-informed regarding infrared image edge detection algorithms and to provide a valuable reference for follow-up investigations, we review relevant research conducted on infrared image edge detection algorithms in the past ten years. First, infrared imaging and edge detection technology are summarized, and then, the difficulties and challenges of infrared image edge detection algorithms are described. Finally, the main infrared image edge detection algorithms are summarized, and the related algorithms are divided into four categories: improved classic edge detection operator-based algorithms, ant colony algorithm-based algorithms, mathematical morphology-based algorithms, and network model-based algorithms. Considering traditional infrared image edge detection algorithms, the morphological method has potential because of its simplicity and ease of use; for non-traditional infrared image edge detection algorithms, the method based on deep learning has stronger pertinence, better robustness, and no requirement of designing complex algorithm steps, which brings new development opportunities to infrared image edge detection.

Logging system login prompt

Users on or after January 1, 2021, please select this region to log in to the system

Users on or before December 31, 2020, please select this area to log in to the system

Monthly, Established 1979

Competent Authorities:China North Industries Group Corporation

Sponsored by:Kunming Institute of Physics
China Ordnance Society, Speciality

ISSN:1001-8891

CN:53-1054/TN

Postal distribution code:64-26

Editorial Office:No.31 Jiao Chang Dong Road, Kunming, 650223, China

Tel:0871-65105248

E-mail:irtek@china.com

Infrared technology is one of the earliest photoelectronic journals in China.Infrared Technology is published by Science Press, and it is a single monthly technical journal.

Infrared Technology is a professional and academic journal based on scientific research, which comprehensively reflects the research progress of infrared technology at home and abroad and its application in national defense, industry, agriculture and national economy.After years of efforts, INFRARED Technology has become the core journal of Chinese, The core journal of Chinese science and technology, and the source journal of Chinese Science citation database.


MORE>
Download Center
MORE+