Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Display Method:
Systems & Designs
Shack-Hartman Detector Real-time Wavefront Processor Based on FPGA
LIU Zhaoqing, LI Li, DONG Bing, JIN Weiqi
2021, 43(8): 717-722.  
Abstract HTML(0) PDF(0)
The Shack-Hartman wavefront sensor is the most widely used real-time wavefront detector in adaptive optics systems. In this study, a Shack-Hartmann sensor with high resolution, high frame rate, and a large-scale sub-aperture number is proposed. Based on the requirements of wavefront processing calculations and real-time performance, a field-programmable gate array (FPGA) is also proposed. The real-time wavefront processor structure and wavefront slope calculation method are investigated. The system employed the core processing module to reuse the method to calculate the centroid of the spot in the sub-aperture and transmitted the processed centroid data to the PC in real time through USB 3.0. The processor was designed with a XILINX Kintex7-325T FPGA processing chip. The results demonstrate that the algorithm can perform low-latency, real-time operations on 1020×1020 images and 56×56 sub-aperture Hartmann sensors at 560 frames per second. The spot centroid calculation increased the wavefront processing speed of the system and the control speed of the entire adaptive optics system.
Simple Time-sharing Long Wave Infrared Polarization Imaging System
LU Gaoxiang, YANG Zhiyong, SONG Junchen
2021, 43(8): 723-729.  
Abstract HTML(0) PDF(0)
To conduct research on infrared polarization imaging technology, this paper designs and builds a long-wave infrared polarization imaging system to achieve target time-sharing imaging. An improved differential image correction method based on single-pixel inhomogeneity was proposed to remove cold reflections; the image was registered using the Sobel edge detection method, and the polarization characteristics of the target scene were analyzed. The results demonstrate that the proposed system can obtain the infrared polarization information of the target scene, and the pre-processed image meets the requirements of the experiment. The edge contour and detailed information obtained by the Stokes vector method for the polarization image of the target scene are more abundant. To further measure the performance of the experimental system, the intensity and polarization degree images were fused. Compared with the infrared intensity image, the fused image has a significantly improved image evaluation quality, which verifies the feasibility of the experimental system. This technology can potentially improve target detection efficiency in complex environments in the future.
Design of a Laser Spot Centroid Detection System Based on NIR CMOS
WANG Xuesong
2021, 43(8): 730-735.  
Abstract HTML(0) PDF(0)
To meet the requirements of high detection sensitivity, high-precision calculation of spot coordinates, and a calculated output speed greater than 1000 fps, this study introduces a system based on a near-infrared CMOS image sensor to calculate and output centroid coordinates in real time. We employed the NIR detector NOIP1FN1300A of the Python1300 series produced by the company ONsemiconductor to image the laser spot. The Cyclone4 series low-power FPGA was used to drive the sensor and deserialize the sensor output data, and a reliable centroid algorithm was used to calculate the spot coordinates. The results in the output part, USB2.0, and RS422 interfaces were used to output the target image and centroid coordinates in real time. The design has the following advantageous features: 1500 fps real-time processing capacity, a concise software code, accurate calculation of centroid coordinates, and low-power consumption.
Optical System Design of Uncooled 640×512 Infrared Seeker
SUN Aiping, GONG Yangyun, PU Enchang, LI Zemin, LEI Xufeng
2021, 43(8): 736-742.  
Abstract HTML(0) PDF(0)
In order to increase the angle of field and the detection distance, we designed an infrared imaging seeker using an 640×512 uncooled FPA. Firstly, we analyzed various structural types of infrared imaging seeker. Based on the characteristics of the design requirements, the universal support type structural type is selected. Secondly, we optimized the image quality of the infrared seeker optical system and analyzed the satisfaction of the frame angle and blind area. Finally, the test results of the real prototype show that the infrared imaging seeker has good imaging quality and can meet the requirements of searching and tracking targets.
Calculation of Optical Properties of Water Droplets with Equal Volume and Different Aspect Ratios
JIANG Jiali, ZHANG Jianqi, MA Xiangchao
2021, 43(8): 743-751.  
Abstract HTML(0) PDF(0)
To study the influence of the asphericity degree on droplet particles optical properties in different gravity fields, the optical properties of water droplet with equal volume and different aspect ratios in the wavelength between 3.0 μm and 5.0 μm were calculated. It was found that although the changing trend of the optical properties of the water droplets with wavelength is very similar, their specific values significantly depend on the spatial orientation and the asphericity degree of water droplets. In general, the absorption cross section of water droplets strongly depends on its aspect ratio only when the azimuth angle θ is small and the wavelength is short. In contrast, the scattering cross section, asymmetry factor, and scattering phase function depend on the aspect ratio of water droplets at any azimuth angle and wavelength. Therefore, because the optical properties are strongly dependent on the aspect ratio of the droplet particles, the radiation transmission properties of fog composed of water droplets should exhibit different results in different gravitational fields.
Systems + Designs
Research on the Key Technology of 3D Laser Inverted Scanning
ZHANG Zhipeng, SHAO Xuejun, PANG Qing
2021, 43(8): 752-756.  
Abstract HTML(0) PDF(0)
The key technologies of 3D laser inverted scanning are mainly studied through the introduction of conventional 3D laser positive scanning technology. The inverted scanning incident angle technology was researched, and the hardware tripod inverted installation conditions were determined to attain a reasonable scanning incident angle and achieve a good acquisition effect of point clouds. On the software side, the technology of efficient and automatic noise removal was examined to realize the automatic and efficient removal of noise in inverted scanning. Through experimental comparison, the key technology of 3D laser inversion scanning can be used to achieve better inversion scanning and scanning results. Moreover, it can be used to reduce the intensity of work, improve work efficiency, and expand the application field of 3D laser scanning. The application fields of 3D laser scanning technology have expanded, and can be used as a reference in the application of inverted scanning technology, automatic and high-efficiency noise processing technology, and so on. Furthermore, this method provides a reference for infrared technology in image fusion, image information recognition, image noise reduction, and so on.
Survey & Review
A Review of Infrared Spectrum Modeling Based on Convolutional Neural Networks
WANG Kun, SHI Yong, LIU Chichi, XIE Yi, CAI Ping, KONG Songtao
2021, 43(8): 757-765.  
Abstract HTML(0) PDF(0)
Convolutional neural networks are used to solve problems such as complex data preprocessing, low prediction accuracy, and difficulty in dealing with a large amount of nonlinear data in infrared spectroscopy. Moreover, owing to their strong feature extraction ability and good nonlinear expression ability, the application of convolutional neural networks in the modeling of infrared spectrum analysis has attracted attention. In this study, the advantages of the application of a convolutional neural network for the infrared spectrum are analyzed, and the structure and composition of the convolutional neural network are briefly summarized. Then, the dimension problem of the input data in the spectral analysis modeling of the convolutional neural network is described in detail. This paper reviews the influence of convolution kernel parameters in the model design, multi-task processing model, and optimization methods in the training process. Finally, the advantages and disadvantages of this research are analyzed, and future development trends are discussed.
Research Progress and Trends of High Operating Temperature Infrared Detectors
ZHANG Kunjie
2021, 43(8): 766-772.  
Abstract HTML(0) PDF(0)
Low SWaP (size, weight, and power) applications are typical features of thermal imaging systems based on HOT(high operating temperature) detectors. The system performance is comparable to that of a cooled infrared system, with reduced manufacturing costs. They have important application value and are promising prospects for high volume production. The structural features of barrier detectors are introduced, and the structures of the materials used for the barrier detectors and their impact on system performance are analyzed. Other technologies used for HOT detectors are also summarized. Finally, the current research progress on barrier infrared detectors is summarized. Additionally, several future research directions for HOT detector technologies are presented.
Materials & Devices
Preparation of a CdS Ultraviolet Detector
HE Wenjin, XIN Sishu, ZHONG Ke, CHAI Yuanyuan, LI Bingzhe, YANG Wenyun, TAI Yunjian, YUAN Jun
2021, 43(8): 773-776.  
Abstract HTML(0) PDF(0)
A Pt/CdS Schottky UV detector was developed and studied based on the engineering application requirements of UV/IR dual-colored detectors. Key technologies such as the chip wafer surface treatment process for CdS, preparation process of the Pt electrode, and annealing of the UV detector chip were studied. The performance of the Pt/CdS Schottky UV detector was also analyzed. The results suggested a photo response rate of more than 0.2 A/W for wavelengths of 0.3–0.5 μm and an average transmittance of more than 80% for wavelengths of 3–5 μm, which meet the engineering requirements of UV/IR dual-color detectors.
Image Processing & Simulation
Research on Normalized Histogram Characterization of Infrared Thermal Image of Rock Sample Damage
SONG Jingjing, LI Zhonghui, ZHANG Xin, TIAN He, ZHENG Anqi, ZANG Zesheng, ZHANG Quancong
2021, 43(8): 777-783.  
Abstract HTML(0) PDF(0)
Infrared thermal imaging is a very promising method for evaluating coal and rock damage. To further process the infrared image and extract the key information, the damage status of coal and rock can be distinguished according to this quantitative information. With uniaxial loading, fracture development maps were developed, and synchronous acquisition of infrared images of the rock samples was carried out. The infrared images were analyzed and processed using a normalized histogram, and the details of the infrared images were quantitatively characterized. The results show that the gray value distribution of the infrared images at different times can reflect the surface temperature changes and stress values during the failure process of the sample. When the main fracture occurred, the percentage of pixels in the gray value interval [240, 255] (the surface temperature of the rock sample was 29.01℃-33.19℃) increased by 13.85% compared with that in the previous moment. In addition, the change trend of the proportion of pixels in the gray value interval [224, 255] over time is highly correlated with rock damage variables, which shows that the normalized histogram can characterize the damage and destruction process of the rock mass.
Image Processing ' Simulation
Infrared Armored Target Detection Based on Edge-perception in Deep Neural Network
SHENG Dajun, ZHANG Qiang
2021, 43(8): 784-791.  
Abstract HTML(0) PDF(0)
Automatic detection of armored targets has always been the most challenging problem in the field of infrared guidance. Traditional models address this problem by extracting the low-level features of an object and then training the feature classifier. However, because traditional detection algorithms can not cover all object patterns, the detection performance in practical applications is limited. Inspired by the edge-aware model, this study proposes an improved deep network based on edge perception. The network improves the accuracy of the armored contour through an edge-aware fusion module. By exploiting he advantages of the feature extraction module and context aggregation module, it can better adapt to the shape changes of objects and has high detection and recognition accuracy. The results show that the proposed armored detection network model can effectively improve the accuracy of detection and positioning in infrared images.
Image Processing ( Simulation
A High Dynamic Range Compression Technique Based on Infrared Contrast Enhancement
GONG Zhiqiang, LIU Renjun, WANG Liqing, PENG Ling, LUO Yin
2021, 43(8): 792-797.  
Abstract HTML(0) PDF(0)
It has always been technically difficult to compress the high dynamic range data collected by an infrared detector to low dynamic range image data, while preserving the image information as much as possible and improving the contrast of the image. To solve this problem, a new infrared image compression method was proposed. In this method, histogram information is introduced, and the pixels of the background and target regions are distinguished by the segmentation of the histogram. Then, the compression model is established. Finally, enhancing the contrast of the image pixels using different coefficients combines the segmented histogram. The algorithm proposed in this paper uses histogram information to distinguish the pixels of the background region and the pixels of the target region and can effectively suppress background noise when enhancing the image contrast. The experimental results show that the proposed algorithm can better highlight details and improve the contrast.
Image Processing ) Simulation
Nighttime Fog Removal Using the Dark Point Light Source Model
ZHANG Jingyang, YAN Limin, CHEN Zhiheng
2021, 43(8): 798-803.  
Abstract HTML(0) PDF(0)
To address image distortion, texture loss, and low brightness in nighttime fog scenes, this paper proposes a nighttime defogging algorithm based on a dark point light source model. The dark point light source model was first constructed and the degraded image was processed by an algorithm that utilizes both bilateral filtering and limited contrast adaptive histogram equalization. Then, the defogging image was obtained by combining with the atmospheric scattering model. The experimental results show that this algorithm has a fast processing speed, a better effect of nighttime fogging, and a certain degree of improvement in terms of contrast, average gradient, and information entropy when compared with the contrast algorithm. This model can therefore effectively address image distortion, texture loss, and low brightness of fogging images.
Ir Applications
Data Preprocessing Method for Infrared Spectra Analysis of Natural Gas Components
KANG Ming, HAN Senping, YANG Hongjie, TANG Dedong, LI Yanjun, WANG Zhiqi
2021, 43(8): 804-808.  
Abstract HTML(0) PDF(0)
When using infrared spectroscopy to analyze the components of natural gas, the obtained spectral signals often contain interference from stray light, noise, baseline drift, and other factors, which affects the resulting quantitative analysis. Therefore, it is necessary to preprocess the original spectrum before modeling. As a potential solution, an SG smoothing method combined with the soft threshold denoising method of the sym6 wavelet function was proposed to preprocess the spectrogram. The traditional preprocessing method and the proposed method are compared and analyzed. The results show that when the proposed method is used to preprocess the spectrogram, the highest goodness of fit value is 0.98652, and the lowest residual sum of squares value is 5.50694, which proves that the function peak fitting effect is the best after using this method, and the processing effect is better than that of the traditional method.
Research Development of Infrared Stealth Materials
SHEN Yulian, LI Chunhai, GUO Shaoyun, CHEN Rong
2021, 43(4): 312-323.  
[Abstract](211) [FullText HTML](104) [PDF 1128KB](69)
Present State and Perspectives of Small Infrared Targets Detection Technology
HOU Wang, SUN Xiao-liang, SHANG Yang, YU Qi-feng
2015, 37(1): 1-10.  
[Abstract](291) [PDF 2162KB](28)
Uncooled Infrared FPA--A Review and Forecast
FENG Tao, JIN Wei-qi, SI Jun-jie
2015, (3): 177-184.  
[Abstract](583) [PDF 1085KB](23)
Research on Influence Factors for Measuring and Method of Correction in Infrared Thermometer
LIAO Panpan, ZHANG Jiamin
2017, 39(2): 173-177.  
[Abstract](120) [PDF 1228KB](9)
Read Out Integrated Circuit for Third-Generation Infrared Focal Plane Detector
BAI Pi-ji, YAO Li-bin
2015, (2): 89-96.  
[Abstract](520) [PDF 738KB](17)
对红外探测器不断增长和提高的需求催生了第三代红外焦平面探测器技术。根据第三代红外探测器的概念,像素达到百万级,热灵敏度NETD达到1 mK量级是第三代制冷型高性能红外焦平面探测器的基本特征。计算结果表明读出电路需要达到1000 Me-以上的电荷处理能力和100 dB左右的动态范围(Dynamic Range)才能满足上述第三代红外焦平面探测器需求。提出在像素内进行数字积分技术,以期突破传统模拟读出电路的电荷存储量和动态范围瓶颈限制,使高空间分辨率、高温度分辨率及高帧频的第三代高性能制冷型红外焦平面探测器得到实现。
Infrared Thermography NDT and Its Development
2018, 40(5): 401-411.  
[Abstract](157) [PDF 1575KB](7)
Developments of High Performance Short-wave Infrared InGaAs Focal Plane Detectors
SHAO Xiumei, GONG Haimei, LI Xue, FANG Jiaxiong, TANG Hengjing, LI Tao, HUANG Songlei, HUANG Zhangchen
2016, 38(8): 629-635.  
[Abstract](229) [PDF 900KB](7)
中科院上海技物所近十年来开展了高性能短波红外 InGaAs 焦平面探测器的研究。0.9~1.7?m近红外 InGaAs 焦平面探测器已实现了256×1、512×1、1024×1等多种线列规格,以及320×256、640×512、4000×128等面阵,室温暗电流密度<5 nA/cm2,室温峰值探测率优于5×1012 cm?Hz1/2/W。同时,开展了向可见波段拓展的320×256焦平面探测器研究,光谱范围0.5~1.7?m,在0.8?m 的量子效率约20%,在1.0?m 的量子效率约45%。针对高光谱应用需求,上海技物所开展了1.0~2.5?m 短波红外 InGaAs 探测器研究,暗电流密度小于10 nA/cm2@200 K,形成了512×256、1024×128等多规格探测器,峰值量子效率高于75%,峰值探测率优于5×1011 cm?Hz1/2/W。
Infrared Image Background Compensation Based on Morphological Filter
LI Wuzhou, YU Feng, WANG Bing, HU Huxiang, ZHOU Changrong
2016, 38(4): 333-336.  
[Abstract](415) [PDF 995KB](5)
Military Application of UAV Reconnaissance Target Localization
YANG Shuai, CHENG Hong, LI Ting, SUN Wenbang
2016, 38(6): 467-471.  
[Abstract](192) [PDF 579KB](7)
Research Progress of Low Infrared Emissivity Materials
ZHANG Wei-gang, XU Guo-yue, XUE Lian-hai
2015, (5): 361-367.  
[Abstract](107) [PDF 602KB](3)
Review of Infrared Image Edge Detection Algorithms
HE Qian, LIU Boyun
2021, 43(3): 199-207.  
[Abstract](289) [FullText HTML](272) [PDF 758KB](272)
To ensure that researchers are well-informed regarding infrared image edge detection algorithms and to provide a valuable reference for follow-up investigations, we review relevant research conducted on infrared image edge detection algorithms in the past ten years. First, infrared imaging and edge detection technology are summarized, and then, the difficulties and challenges of infrared image edge detection algorithms are described. Finally, the main infrared image edge detection algorithms are summarized, and the related algorithms are divided into four categories: improved classic edge detection operator-based algorithms, ant colony algorithm-based algorithms, mathematical morphology-based algorithms, and network model-based algorithms. Considering traditional infrared image edge detection algorithms, the morphological method has potential because of its simplicity and ease of use; for non-traditional infrared image edge detection algorithms, the method based on deep learning has stronger pertinence, better robustness, and no requirement of designing complex algorithm steps, which brings new development opportunities to infrared image edge detection.
Progress in Oxide-based Ultraviolet Detectors
JIA Menghan, TANG Libin, ZUO Wenbin, WANG Fang, JI Rongbin, XIANG Jinzhong
2020, 42(12): 1121-1133.  
[Abstract](1807) [FullText HTML](360) [PDF 11718KB](360)
With the development of ultraviolet detection technology, oxide materials showing the unique advantages in the field of ultraviolet detection, which the traditional detectors didn't possess, and becoming a hot research topic in recent years. It is a fast-developing dual-purpose detection technology after the infrared detection technology. However, the wide applications of oxide-based ultraviolet detectors still face challenges. In this paper, we have summarized the applications and development histories of the ultraviolet detection technology at home and abroad. The crystal structures, properties and progresses in devices of three kinds of metal oxide ultraviolet materials are summarized and discussed. In the end, the problems in the research of the oxide-based ultraviolet detection materials and devices are analyzed, and the development of the oxide-based ultraviolet detection technology is summarized and prospected.

Logging system login prompt

Users on or after January 1, 2021, please select this region to log in to the system

Users on or before December 31, 2020, please select this area to log in to the system

Monthly, Established 1979

Competent Authorities:China North Industries Group Corporation

Sponsored by:Kunming Institute of Physics
China Ordnance Society, Speciality



Postal distribution code:64-26

Editorial Office:No.31 Jiao Chang Dong Road, Kunming, 650223, China


Infrared technology is one of the earliest photoelectronic journals in China.Infrared Technology is published by Science Press, and it is a single monthly technical journal.

Infrared Technology is a professional and academic journal based on scientific research, which comprehensively reflects the research progress of infrared technology at home and abroad and its application in national defense, industry, agriculture and national economy.After years of efforts, INFRARED Technology has become the core journal of Chinese, The core journal of Chinese science and technology, and the source journal of Chinese Science citation database.

Download Center