Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Display Method:
Survey & Review
Review of Infrared Image Edge Detection Algorithms
HE Qian, LIU Boyun
2021, 43(3): 199-207.  
Abstract HTML(2) PDF(0)
Abstract:
To ensure that researchers are well-informed regarding infrared image edge detection algorithms and to provide a valuable reference for follow-up investigations, we review relevant research conducted on infrared image edge detection algorithms in the past ten years. First, infrared imaging and edge detection technology are summarized, and then, the difficulties and challenges of infrared image edge detection algorithms are described. Finally, the main infrared image edge detection algorithms are summarized, and the related algorithms are divided into four categories: improved classic edge detection operator-based algorithms, ant colony algorithm-based algorithms, mathematical morphology-based algorithms, and network model-based algorithms. Considering traditional infrared image edge detection algorithms, the morphological method has potential because of its simplicity and ease of use; for non-traditional infrared image edge detection algorithms, the method based on deep learning has stronger pertinence, better robustness, and no requirement of designing complex algorithm steps, which brings new development opportunities to infrared image edge detection.
Review of Dynamic Range Compression Algorithms for Infrared Images
OUYANG Huiming, LI Zemin, ZHOU Yongkang, WANG Shijin, ZHU Xiaojie, ZENG Bangze, ZHAO Deli, HU Jianchuan
2021, 43(3): 208-217.  
Abstract HTML(0) PDF(0)
Abstract:
Dynamic range compression of infrared images is an important research direction in the field of infrared image visualization. The dynamic range compression algorithm directly determines the important visualization indexes of the original infrared image, such as detail retention and overall perception; in a sense, it is the basis and guarantee of detail enhancement. This study investigates a wide dynamic range compression algorithm and a local compression algorithm based on a global compression algorithm. Based on the two algorithms, we study and analyze the development process and the advantages and disadvantages to improve the research direction and development trend, which will provide a reference for researchers.
Systems & Designs
Variable Step Autofocus Design for Infrared Telescopes
YANG Pengbo, LI Jie, CUI Wennan, ZHANG Tao
2021, 43(3): 218-224.  
Abstract HTML(0) PDF(0)
Abstract:
In long-range target detection and tracking, image clarity plays a critical role. An infrared telescope system has a long imaging distance and a short depth of field, and the image blur caused by defocusing tends to be more severe in this system. In addition, because of the atmospheric refraction, the image derived from the telescope constantly changes. This results in a low focusing success rate and low efficiency in traditional focusing algorithms. To improve both the success rate and speed of autofocus, a mountain climbing algorithmic method with a variable step size was proposed in this study. Image clarity was obtained several times, and its median was calculated to ensure image clarity accuracy. Using the mountain climbing algorithm with momentum and acceleration reduces focusing instability as well as the number of steps required for the coarse focusing process. The algorithm was applied in an actual medium-wave infrared telescope system. Experimental results revealed that the focusing steps required by the algorithm for the coarse focusing stage were reduced by 12.8%, in comparison with the traditional mountain climbing method, meeting the requirements of an infrared telescope system.
Thermal Calculation of Countercurrent Cooling Tower and Design of Infrared Thermal Image Temperature Control System
HU Yang, CHEN Cheng, HUA Sangtun, QIU Yafeng
2021, 43(3): 225-229.  
Abstract HTML(0) PDF(1)
Abstract:
In this study, a temperature control system was designed based on an infrared thermal image of a hydroelectric hybrid cooling tower. A theoretical model of a cooling tower thermal calculation was deduced based on the structural characteristics of a hydroelectric hybrid cooling tower, as well as the balance equation of heat and mass exchange in a cooling tower and the Merkel mathematical model. A thermal performance monitoring model of a countercurrent cooling tower was first developed using infrared thermal imaging technology, and then the temperature control system for a cooling tower was designed.The causes of temperature control precision errors in the cooling tower temperature control system were analyzed. The accuracy of the thermal calculation model and the feasibility of using a hand-held infrared thermometer for designing the temperature control system of a cooling tower were verified by field experiments.
Image Processing and Simulation
Method of Detecting Substation Equipment in Infrared Images Based on Improved Gaussian Convolution Kernel
WU Tianquan, GUO Jing, GOU Xiantai, HUANG Qinqin, ZHOU Weichao
2021, 43(3): 230-236.  
Abstract HTML(0) PDF(0)
Abstract:
Slow and inaccurate target detection algorithms used to analyze infrared images are the focus of this study. An infrared image detection method is proposed for substation equipment using an improved Gaussian convolution kernel, which is based on the CenterNet algorithm without an anchor point. In brief, data samples were first collected using on-site substation inspection robot equipment, the algorithm model was trained and verified, and finally, accurate identification and positioning of infrared image substation equipment was achieved. Specifically, based on the infrared image library collected by the substation inspection robot and the infrared thermal imager, methods of deep learning were applied to train and test a model using the dataset, the target detection technology of substation infrared images was studied, and the equipment center was accurately judged through deep learning technology to achieve target classification and regression. The identification and positioning accuracy of the substation target detection were improved by adopting this proposed method, and it provides new ideas for the intelligent detection of infrared images for substation equipment.
Vehicle-based Thermal Imaging Target Detection Method Based on Enhanced Lightweight Network
YI Shi, ZHOU Siyao, SHEN Lian, ZHU Jinming
2021, 43(3): 237-245.  
Abstract HTML(0) PDF(0)
Abstract:
A vehicle-based thermal imaging system does not depend on a light source, is insensitive to weather, and has a long detection distance. Automatic target detection using vehicle-based thermal imaging is of great significance for intelligent night driving. Compared with visible images, the infrared images acquired by a vehicle-based thermal imaging system based on existing algorithms have low resolution, and the details of small long-range targets are blurred. Moreover, the real-time algorithm performance required to address the vehicle speed and computing ability of the vehicle-embedded platform should be considered in the vehicle-based thermal imaging target detection method. To solve these problems, an enhanced lightweight infrared target detection network (I-YOLO) for a vehicle-based thermal imaging system is proposed in this study. The network uses a tiny you only look once(Tiny-YOLOV3) infrastructure to extract shallow convolution-layer features according to the characteristics of infrared images to improve the detection of small infrared targets. A single-channel convolutional core was used to reduce the amount of computation. A detection method based on a CenterNet structure is used to reduce the false detection rate and improve the detection speed. The actual test shows that the average detection rate of the I-YOLO target detection network in vehicle-based thermal imaging target detection reached 91%, while the average detection speed was81 fps, and the weight of the training model was96MB, which is suitable for deployment on a vehicle-based embedded system.
Improved Non-uniformity Correction Method by Pixel-wise Radiometric Self-calibration for Infrared Imaging
WANG Jie, HONG Wenqing, GE Peng, WANG Xiaodong, PAN Chao
2021, 43(3): 246-250.  
Abstract HTML(0) PDF(0)
Abstract:
Eliminating non-uniformity is a persistent challenge for infrared imaging systems, especially when the integration time varies. This paper describes a non-uniformity correction method with the ability to adapt to arbitrary changes in integration time by correcting the infrared radiation flux map of the scene, which is estimated by pixel-wise radiometric self-calibration. Multiple images of an extended blackbody, obtained with different integration times and blackbody temperatures, were used to obtain the parameters of both the correction model and radiometric calibration model. The correction effect of this method within a wide range of integration times was verified by a high-resolution HgCdTe medium-wave infrared imager.
Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network
ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan
2021, 43(3): 251-257.  
Abstract HTML(0) PDF(0)
Abstract:
Existing infrared-guided weapons heavily rely on operators to acquire targets, and the accuracy of acquisition is positively correlated with a target's texture details. To improve the display quality of weak small regions and meet the design requirements of miniaturization, modularization, and low-cost seekers, an image super-resolution(SR) reconstruction algorithm based on a pyramid dense residual network is proposed. The dense residual network is the basic framework of the proposed model. Through the dense connection layer and the residual network, the model can learn the non-linear mapping between images of different scales, and the multi-scale feature can be used to predict the high-frequency residual. In addition, using the deep supervision module to guide network training is conducive to the realization of SR reconstruction with a larger upper-sampling factor and improvements to its generalization ability. A large number of simulation results show that our proposed model outperforms comparison algorithms and that it has a high engineering application value.
Infrared Target Detection of High Voltage Insulation Bushing Based on Textural Features
ZHAO Hongshan, ZHANG Zeyan, MENG Hang, ZHANG Junhao
2021, 43(3): 258-265.  
Abstract HTML(0) PDF(1)
Abstract:
In infrared image target detection based on the traditional image segmentation method, when the background color and the color of the detected object are similar, it is often difficult to identify the detected object effectively in the infrared image. Therefore, to further improve the recognition accuracy of insulating bushings in infrared images, this paper proposes a target detection method based on the texture features of insulation bushings. First, to enhance the texture of the image, bilateral filtering is used to replace the Gaussian convolution filtering in the traditional Laplacian of Gaussian, and image filtering and enhancement are performed through Laplace of bilateral filtering. Then, based on the special texture of the outer sheds and insulation bushing, a descriptor reflecting the periodic distribution of sheds was established and rough identification was performed using the image scanning method. Finally, based on the DBSCAN clustering algorithm, a method for solving its hyper parameters was established to achieve outlier elimination and feature clustering, and to complete the fine identification of the high-voltage insulation bushing. By experimentally comparing other recognition algorithms for infrared images of insulating bushings, the algorithm in this study can effectively segment the insulation bushing main body and overcome the shortcomings of traditional image segmentation methods. The recognition rate on the dataset reached over 85%.
Materials & Devices
A New Multiband Composite Vegetation Camouflage Material
XU Rong, ZHANG Xiaozhong, WU Xiao
2021, 43(3): 266-271.  
Abstract HTML(0) PDF(0)
Abstract:
To meet the requirements of multiband compatible camouflage, a new composite vegetation camouflage material that can realize multiband compatibility of visible light, infrared, and radar was fabricated by reasonably matching various materials and a multi-functional layer structure. The absorbing properties of the camouflage material were evaluated by a radar wave shielding effectiveness and reflectivity test. The visible and thermal infrared camouflage properties of the camouflage material were tested by an imaging method. The results show that the camouflage material has good radar wave attenuation performance, and the absorption bandwidth at values of 5dB or more is as high as 3.9GHz. The texture, color, brightness, and thermal map of the surface layer of the vegetation camouflage material are close to the background values, and the thermal insulation effect is evident, enabling good visible and infrared camouflage effects.
Chiral Metasurface Designed for the Asymmetric Transmission of the Mid-infrared Band
XIAO Tong, TIAN Changhui, WANG Jun, MENG Zhen, FAN Qi, GAO Zhiqiang, XIE Xiaowei, TIAN Xiaoxia
2021, 43(3): 272-278.  
Abstract HTML(0) PDF(0)
Abstract:
To study the asymmetric transmission characteristics of the chiral metasurface in the mid-infrared band, a chiral metasurface unit based on an L-shaped structure isdesigned.A simulation analysis using CST electromagnetic software reveals that the asymmetric transmission parameter is greater than 0.8 in the range of 68.92-88.68 THz and reaches the extreme value of 0.88 at 73.25 THz. It can be observedthat the structure exhibits good performance in terms of asymmetric transmission in the mid-infrared band.The polarization selective reflection and cross-polarization transmission mechanism of the chiral metasurface are clarified by analyzing the surface current distribution and phase distribution of the transmission field.The relationship between the chiral strength of the unit structure and the asymmetric transmission characteristics is also discussed.The influence of the thickness of the dielectric and metal layers and the incident angle of the electromagnetic wave on the asymmetric transmission characteristics is examined.
Terahertz Technology
Principal Component Spectrum Analysis of Licorice Based on Terahertz Radiation
YAN Fang, ZHANG Junlin, LIU Chenghao, YU Yang
2021, 43(3): 279-283.  
Abstract HTML(0) PDF(0)
Abstract:
In this study, a transmission terahertz time-domain spectrum system was used to test the terahertz spectra of glycyrrhizic acid, glycyrrhetic acid, and glycyrrhizin as the main components of glycyrrhiza (licorice). The characteristics of these licorice constituents and their terahertz absorption peaks were found to be close to each other and their absorption spectra were similar. A quantum chemistry method was used to simulate the terahertz absorption spectrum of glycyrrhizic acid; this spectrum was then compared with the experimental spectrum to perform a qualitative analysis of the three elements. In this study, based on the density functional theory (DFT) and PM3 models, a single molecular configuration of glycyrrhizic acid was introduced for structural optimization and frequency calculation. The results showed that the terahertz simulated absorption peaks obtained by the two methods coincided with the experimental absorption peaks, and the terahertz simulated absorption spectrum waveforms obtained based on the DFT model were closer to those of the experimental spectrum. Finally, the characteristic absorption peak of glycyrrhizic acid at 1.655THz and the terahertz absorption coefficients of six nearby numerical points were selected, and the average value was used to perform a one-dimensional linear regression fitting with the concentration. The fitting results verified the licorice theoretically, and the acid terahertz absorption spectrum conformed to Lambert's law.
Guidance & Countermeasure
Skin Radiation Measurement Method of High Altitude Aircraft Based on Long Wave Infrared Light
MA Jun, WEN Maoxing, ZHOU Feng
2021, 43(3): 284-291.  
Abstract HTML(0) PDF(0)
Abstract:
This paper presents a method for radiation measurement and temperature inversion of aircraft skin in flight. Firstly, the skin radiation, atmospheric transport, and absolute radiation correction models are established. Then, the formula of temperature inversion is deduced, and the skin temperature is calculated by successive approximation. Based on theoretical analysis, a wideband long wave (infrared) camera that can image light of wavelength 8-12 μm is used for experimental verification and temperature inversion. By calculating and modifying the uncertainty of inverted temperature, the result of modifying the skin temperature of civil aircraft at 5 km flight height is 268 K; the uncertainty of modifying is 4 K, and the relative uncertainty of modifying is 1.49%.The research work of this paper would be useful for acquiring infrared radiation characteristics of aircraft targets.
Infrared Dome Pure Thermal Stress Analysis
JIANG Hong, LIN Yu
2021, 43(3): 292-298.  
Abstract HTML(0) PDF(0)
Abstract:
When supersonic infrared guided tactical missiles fly, the infrared dome of the missile is affected by the intense aerodynamic heat. The thermal stress generated by heat is the main factor causes thermal cracking of the dome. In response to this problem, in the early development stage of the missile dome, a simple and quick method to select the dome material and whether the next restraint state can be studied is to simulate the actual working state of the solidified missile metal shell of the dome, infrared dome pure thermal stress analysis. The pure heat caused by the temperature gradient ▽T of the free state dome is separated from the larger heat caused by the superimposed displacement constraint, the smaller pure heat is analyzed separately. The leading factor causing the thermal explosion of the dome is analyzed. Combining the dual-color infrared transmission requirements, taking the zinc sulfide infrared dome as an example, the pure heat simulation is analyzed. The strength limit of ZnS material is greater than pure heat, and the dome can enter the constrained state. In the thermal test the dome did not burst, which proves that this method can be used for the selection of dome materials.
Present State and Perspectives of Small Infrared Targets Detection Technology
HOU Wang, SUN Xiao-liang, SHANG Yang, YU Qi-feng
2015, 37(1): 1-10.  
[Abstract](63) [PDF 2162KB](10)
摘要:
在一些关键的军事和民用红外成像应用领域,待突破的技术瓶颈往往都集中在红外弱小目标检测技术上.简介了红外弱小目标检测的含义和在军事、民用方面的意义,重点综述了目前红外弱小目标检测的各类典型算法原理和特点,最后对红外弱小目标检测技术的研究和发展趋势进行了预测.
Uncooled Infrared FPA--A Review and Forecast
FENG Tao, JIN Wei-qi, SI Jun-jie
2015, (3): 177-184.  
[Abstract](41) [PDF 1085KB](9)
摘要:
非制冷红外焦平面探测器是热成像系统的核心部件。介绍了非制冷红外焦平面探测器的工作原理及微测辐射热计、读出电路、真空封装三大技术模块,分析了影响其性能的关键参数。与微测辐射热计设计相关的重要参数包括低的热导、高的红外吸收率、合适的热敏材料等;读出电路的传统功能是实现信号的转换读出,近年来也逐渐加入了信号补偿的功能;真空封装技术包括了金属管壳封装、陶瓷管壳封装、晶圆级封装和像元级封装。列举了国内外主要厂商的非制冷红外焦平面探测器的技术指标及近年来的最新技术进展,总结了非制冷红外焦平面探测器的技术发展趋势。
Read Out Integrated Circuit for Third-Generation Infrared Focal Plane Detector
BAI Pi-ji, YAO Li-bin
2015, (2): 89-96.  
[Abstract](41) [PDF 738KB](6)
摘要:
对红外探测器不断增长和提高的需求催生了第三代红外焦平面探测器技术。根据第三代红外探测器的概念,像素达到百万级,热灵敏度NETD达到1 mK量级是第三代制冷型高性能红外焦平面探测器的基本特征。计算结果表明读出电路需要达到1000 Me-以上的电荷处理能力和100 dB左右的动态范围(Dynamic Range)才能满足上述第三代红外焦平面探测器需求。提出在像素内进行数字积分技术,以期突破传统模拟读出电路的电荷存储量和动态范围瓶颈限制,使高空间分辨率、高温度分辨率及高帧频的第三代高性能制冷型红外焦平面探测器得到实现。
Research on Influence Factors for Measuring and Method of Correction in Infrared Thermometer
LIAO Panpan, ZHANG Jiamin
2017, 39(2): 173-177.  
[Abstract](30) [PDF 1228KB](4)
摘要:
为了减少红外测温仪的测量误差,提高红外测温仪的测温精度,分析了距离、发射率和外界环境温度等因素对红外测温仪测温的影响;建立了红外测温实验系统采集测温数据,并对采集到的实验数据进行了分析验证,通过分析验证可得距离因素对红外辐射测温精度有较大的影响,并且存在一定的关系,从而为提高红外测温精度的提供了依据;设计了一套提高红外测温仪测量精度的系统,该系统能够测出被测物与红外测温仪之间的距离,根据测出的结果得到距离补偿公式,然后依据公式得出温度的距离补偿,从而得到物体的实际温度.最后分析可得,红外测温仪的测量精度能够大幅提高.
Infrared Image Background Compensation Based on Morphological Filter
LI Wuzhou, YU Feng, WANG Bing, HU Huxiang, ZHOU Changrong
2016, 38(4): 333-336.  
[Abstract](26) [PDF 995KB](2)
摘要:
天空背景的红外辐射特性与观测天顶角有关,造成具有天空背景的红外图像背景亮度不均匀,影响了红外图像后续处理.针对红外图像天空背景亮度不均匀的特点,提出了一种基于形态学滤波的红外图像背景补偿方法,并采用了一种简单的自动全局阈值处理方法对背景补偿效果进行了实验验证,结果表明,该方法能够很好的解决红外图像天空背景亮度不均匀的问题.
Infrared Thermography NDT and Its Development
ZHENG Kai, JIANG Haijun, CHEN Li
2018, 40(5): 401-411.  
[Abstract](16) [PDF 1575KB](3)
摘要:
红外热波成像是近年来发展较快的一种新型无损检测技术,它是一门跨学科、跨应用领域的通用型实用技术,其三大核心技术包括热激励、红外图像采集及红外图像处理.本文对热激励技术中的闪光灯、激光、卤素灯、红外灯、超声、电磁等几种主要热激励方法的特点及研究现状进行了介绍与对比,分析了采集技术中的制冷与非制冷热像仪各自特点,并对红外图像处理技术中的降噪、增强、序列热图处理及缺陷提取等四大研究方向进行了总结,介绍了相应发展状况和进展.最后总结了该技术的发展趋势.
Military Application of UAV Reconnaissance Target Localization
YANG Shuai, CHENG Hong, LI Ting, SUN Wenbang
2016, 38(6): 467-471.  
[Abstract](18) [PDF 579KB](2)
摘要:
无人机能够通过多种方法定位出目标的精确位置信息,以便实施战场指挥或军事打击。主要整理并分类介绍了无人机侦察图像目标定位的各种技术原理,解析了其在军事领域的应用范围;并以无人机飞行任务为模型,完整详细地用空间量算的无人机侦察图像目标定位技术对无人机实际飞行进行航迹规划的运用,证明了无人机侦察图像目标定位技术的重要军事价值。
Developments of High Performance Short-wave Infrared InGaAs Focal Plane Detectors
SHAO Xiumei, GONG Haimei, LI Xue, FANG Jiaxiong, TANG Hengjing, LI Tao, HUANG Songlei, HUANG Zhangchen
2016, 38(8): 629-635.  
[Abstract](25) [PDF 900KB](4)
摘要:
中科院上海技物所近十年来开展了高性能短波红外 InGaAs 焦平面探测器的研究。0.9~1.7?m近红外 InGaAs 焦平面探测器已实现了256×1、512×1、1024×1等多种线列规格,以及320×256、640×512、4000×128等面阵,室温暗电流密度<5 nA/cm2,室温峰值探测率优于5×1012 cm?Hz1/2/W。同时,开展了向可见波段拓展的320×256焦平面探测器研究,光谱范围0.5~1.7?m,在0.8?m 的量子效率约20%,在1.0?m 的量子效率约45%。针对高光谱应用需求,上海技物所开展了1.0~2.5?m 短波红外 InGaAs 探测器研究,暗电流密度小于10 nA/cm2@200 K,形成了512×256、1024×128等多规格探测器,峰值量子效率高于75%,峰值探测率优于5×1011 cm?Hz1/2/W。
Research Progress of Low Infrared Emissivity Materials
ZHANG Wei-gang, XU Guo-yue, XUE Lian-hai
2015, (5): 361-367.  
[Abstract](19) [PDF 602KB](1)
摘要:
低红外发射率材料是目前公认的可实现飞行器红外隐身的特种功能材料。现已报道了纳米复合薄膜、单层(多层)膜结构材料、树脂/金属复合涂层、树脂/半导体复合涂层、核壳结构材料等多种类型的低红外发射率材料。介绍了上述低红外发射率材料的优缺点及最新研究进展,指出低红外发射率涂层的理论研究、红外与激光兼容隐身材料、树脂/半导体复合涂层及红外光谱选择性低发射率涂层是未来的重点研究方向。
Study of Sea-sky-line Detection Algorithm Based on Hough Transform
AN Bo-wen, HU Chun-nuan, LIU Jie, CAO Yan-jue
2015, (3): 196-199.  
[Abstract](17) [PDF 644KB](1)
摘要:
海天线检测是红外航拍图像的一项重要研究内容。深入探讨海天线检测问题,给出了一种实用的检测算法。首先,对获取的红外图像进行梯度运算,采用Ostu阈值分割方法,获取海天边缘信息;然后根据Hough变换原理,完成海天线的检测。此外,通过随机点采样提高了海天线检测的速率,通过多线段拟合提高了检测的准确率。实验结果表明,本算法可以准确、高效地检测出海天线,为下一步研究奠定了基础。
Progress in Oxide-based Ultraviolet Detectors
JIA Menghan, TANG Libin, ZUO Wenbin, WANG Fang, JI Rongbin, XIANG Jinzhong
2020, 42(12): 1121-1133.  
[Abstract](1646) [FullText HTML](85) [PDF 11718KB](85)
Abstract:
With the development of ultraviolet detection technology, oxide materials showing the unique advantages in the field of ultraviolet detection, which the traditional detectors didn't possess, and becoming a hot research topic in recent years. It is a fast-developing dual-purpose detection technology after the infrared detection technology. However, the wide applications of oxide-based ultraviolet detectors still face challenges. In this paper, we have summarized the applications and development histories of the ultraviolet detection technology at home and abroad. The crystal structures, properties and progresses in devices of three kinds of metal oxide ultraviolet materials are summarized and discussed. In the end, the problems in the research of the oxide-based ultraviolet detection materials and devices are analyzed, and the development of the oxide-based ultraviolet detection technology is summarized and prospected.
Simulation Analysis of Thermal-Structure of an Optical Detection System
LI Huan, HU Liang, MENG Xiangfu, LI Qi, WANG Shuang
2020, 42(12): 1141-1150.  
[Abstract](83) [FullText HTML](24) [PDF 730KB](24)
Abstract:
Thermal load is one of the main reasons for the failure of infrared detection system, therefore, thermal-structure coupling analysis of a certain type of infrared imaging optical detection module under different temperature loads by means of ANSYS Workbench software was performed in this study. First, the response of the back intercept between the optical lens and the detector under different temperature loads was observed, and then, the theoretical imaging quality was calculated by the optical software ZEMAX on the basis of the back intercept. Finally, the theoretical calculation models were verified by the environment test. Simultaneously, the deformation rule of the optical detection module under different temperature loads was obtained, and it was found that the conductivity coefficient and thermal expansivity of the installation material of the detector affected the stability of the detection module. This research can provide guidance on the design, optimization, and reliability of infrared imaging optical detection modules.

Logging system login prompt

Users on or after January 1, 2021, please select this region to log in to the system

Users on or before December 31, 2020, please select this area to log in to the system

Monthly, Established 1979

Competent Authorities:China North Industries Group Corporation

Sponsored by:Kunming Institute of Physics
China Ordnance Society, Speciality

ISSN:1001-8891

CN:53-1054/TN

Postal distribution code:64-26

Editorial Office:No.31 Jiao Chang Dong Road, Kunming, 650223, China

Tel:0871-65105248

E-mail:irtek@china.com

Infrared technology is one of the earliest photoelectronic journals in China.Infrared Technology is published by Science Press, and it is a single monthly technical journal.

Infrared Technology is a professional and academic journal based on scientific research, which comprehensively reflects the research progress of infrared technology at home and abroad and its application in national defense, industry, agriculture and national economy.After years of efforts, INFRARED Technology has become the core journal of Chinese, The core journal of Chinese science and technology, and the source journal of Chinese Science citation database.


MORE>
Download Center
MORE+