Citation: | DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128. |
[1] |
LI S, KANG X, FANG L, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. DOI: 10.1016/j.inffus.2016.05.004
|
[2] |
ZHANG H, XU H, TIAN X, et al. Image fusion meets deep learning: a survey and perspective[J]. Information Fusion, 2021, 76: 323-336. DOI: 10.1016/j.inffus.2021.06.008
|
[3] |
罗海波, 张俊超, 盖兴琴, 等. 偏振成像技术的发展现状与展望(特邀)[J]. 红外与激光工程, 2022, 51(1): 101-110.
LUO Haibo, ZHANG Junchao, GAI Xingqin, et al. Development status and prospect of polarization imaging technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 101-110.
|
[4] |
周强国, 黄志明, 周炜. 偏振成像技术的研究进展及应用[J]. 红外技术, 2021, 43(9): 817-828. http://hwjs.nvir.cn/article/id/76230e4e-2d34-4b1e-be97-88c5023050c6
ZHOU Qiangguo, HUANG Zhiming, ZHOU Wei. Research progress and application of polarization imaging technology[J]. Infrared Technology, 2021, 43(9): 817-828. http://hwjs.nvir.cn/article/id/76230e4e-2d34-4b1e-be97-88c5023050c6
|
[5] |
段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术, 2014, 36(3): 190-195. http://hwjs.nvir.cn/article/id/hwjs201403003
DUAN Jin, FU Qiang, MO Chunhe, et al. Review of polarization imaging technology for international military application(Ⅰ)[J]. Infrared Technology, 2014, 36(3): 190-195. http://hwjs.nvir.cn/article/id/hwjs201403003
|
[6] |
莫春和, 段锦, 付强, 等. 国外偏振成像军事应用的研究进展(下)[J]. 红外技术, 2014, 36(4): 265-270. http://hwjs.nvir.cn/article/id/hwjs201404002
MO Chunhe, DUAN Jin, FU Qiang, et al. Review of polarization imaging technology for international military application(Ⅱ)[J]. Infrared Technology, 2014, 36(4): 265-270. http://hwjs.nvir.cn/article/id/hwjs201404002
|
[7] |
王霞, 赵家碧, 孙晶, 等. 偏振图像融合技术综述[J]. 航天返回与遥感, 2021, 42(6): 9-21.
WANG Xia, ZHAO Jiabi, SUN Jing, et al. Review of polarization image fusion technology[J]. Aerospace Return and Remote Sensing, 2021, 42(6): 9-21.
|
[8] |
LI X, YAN L, QI P, et al. Polarimetric imaging via deep learning: a review[J]. Remote Sensing, 2023, 15(6): 1540. DOI: 10.3390/rs15061540
|
[9] |
YANG Fengbao, DONG Anran, ZHANG Lei, et al. Infrared polarization image fusion based on combination of NSST and improved PCA[J]. Journal of Measurement Science and Instrumentation, 2016, 7(2): 176-184.
|
[10] |
杨风暴, 董安冉, 张雷, 等. DWT, NSCT和改进PCA协同组合红外偏振图像融合[J]. 红外技术, 2017, 39(3): 201-208. http://hwjs.nvir.cn/article/id/hwjs201703001
YANG Fengbao, DONG Anran, ZHANG Lei, et al. Infrared polarization image fusion using the synergistic combination of DWT, NSCT and improved PCA[J]. Infrared Technology, 2017, 39(3): 201-208. http://hwjs.nvir.cn/article/id/hwjs201703001
|
[11] |
沈薛晨, 刘钧, 高明. 基于小波-Contourlet变换的偏振图像融合算法[J]. 红外技术, 2020, 42(2): 182-189. http://hwjs.nvir.cn/article/id/hwjs202002013
SHEN Xuechen, LIU Jun, GAO Ming. Polarization image fusion algorithm based on Wavelet-Contourlet transform[J]. Infrared Technology, 2020, 42(2): 182-189. http://hwjs.nvir.cn/article/id/hwjs202002013
|
[12] |
张雨晨, 李江勇. 基于小波变换的中波红外偏振图像融合[J]. 激光与红外, 2020, 50(5): 578-582.
ZHANG Yuchen, LI Jiangyong. Polarization image fusion based on wavelet transform[J]. Laser & Infrared, 2020, 50(5): 578-582.
|
[13] |
王策, 许素安. 基于Retinex和小波变换的水下偏振图像融合方法[J]. 应用激光, 2022, 42(8): 116-122.
WANG Ce, XU Suan. Underwater polarization image fusion method based on Retinex and wavelet transform[J]. Applied Laser, 2022, 42(8): 116-122.
|
[14] |
陈锦妮, 陈宇洋, 李云红, 等. 基于结构与分解的红外光强与偏振图像融合[J]. 红外技术, 2023, 45(3): 257-265. http://hwjs.nvir.cn/article/id/379e87a8-b9c0-4081-820c-ccd63f3fe4f0
CHEN Jinni, CHEN Yuyang, LI Yunhong, et al. Fusion of infrared intensity and polarized images based on structure and decomposition[J]. Infrared Technology, 2023, 45(3): 257-265. http://hwjs.nvir.cn/article/id/379e87a8-b9c0-4081-820c-ccd63f3fe4f0
|
[15] |
LIU Y, LIU S, WANG Z. A general framework for image fusion based on multiscale transform and sparse representation[J]. Information Fusion, 2015, 24(C): 147-164.
|
[16] |
朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12): 207-215.
ZHU Pan, LIU Zeyang, HUANG Zhanhua. Infrared polarization and intensity image fusion based on dual-tree complex wavelet transform and sparse representation[J]. Acta Photonica Sinica, 2017, 46(12): 207-215.
|
[17] |
ZHU P, LIU L, ZHOU X. Infrared polarization and intensity image fusion based on bivariate BEMD and sparse representation[J]. Multimedia Tools and Applications, 2021, 80(3): 4455-4471. DOI: 10.1007/s11042-020-09860-z
|
[18] |
ZHANG S, YAN Y, SU L, et al. Polarization image fusion algorithm based on improved PCNN[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2013, 9045.
|
[19] |
李世维, 黄丹飞, 王惠敏, 等. 基于BEMD和自适应PCNN的偏振图像融合[J]. 激光杂志, 2018, 39(3): 94-98.
LI Shiwei, HUANG Danfei, WANG Huimin, et al. Polarization image fusion based on BEMD and adaptive PCNN[J]. Laser Journal, 2018, 39(3): 94-98.
|
[20] |
于津强, 段锦, 陈伟民, 等. 基于NSST与自适应SPCNN的水下偏振图像融合[J]. 激光与光电子学进展, 2020, 57(6): 103-113.
YU Jinqiang, DUAN Jin, CHEN Weimin, et al. Underwater polarization image fusion based on NSST and adaptive SPCNN[J]. Laser & Optoelectronics Progress, 2020, 57(6): 103-113.
|
[21] |
叶松, 汤伟平, 孙晓兵, 等. 一种采用IHS空间表征偏振遥感图像的方法[J]. 遥感信息, 2006, 21(2): 11-13.
YE Song, TANG Weiping, SUN Xiaobing, et al. Characterization of the polarized remote sensing images using IHS color system[J]. Remote Sensing Information, 2006, 21(2): 11-13.
|
[22] |
赵永强, 潘泉, 张洪才. 自适应多波段偏振图像融合研究[J]. 光子学报, 2007, 36(7): 1356-1359.
ZHAO Yongqiang, PAN Quan, ZHANG Hongcai. Research on adaptive multi-band polarization image fusion[J]. Acta Photonica Sinica, 2007, 36(7): 1356-1359.
|
[23] |
赵永强, 潘泉, 张洪才. 一种新的全色图像与光谱图像融合方法研究[J]. 光子学报, 2007, 36(1): 180-183.
ZHAO Yongqiang, PAN Quan, ZHANG Hongcai. A new spectral and panchromatic images fusion method[J]. Acta Photonica Sinica, 2007, 36(1): 180-183.
|
[24] |
周浦城, 韩裕生, 薛模根, 等. 基于非负矩阵分解和IHS颜色模型的偏振图像融合方法[J]. 光子学报, 2010, 39(9): 1682-1687.
ZHOU Pucheng, HAN Yusheng, XUE Menggen, et al. Polarization image fusion method based on non-negative matrix factorization and IHS color model[J]. Acta Photonica Sinica, 2010, 39(9): 1682-1687.
|
[25] |
周浦城, 张洪坤, 薛模根. 基于颜色迁移和聚类分割的偏振图像融合方法[J]. 光子学报, 2011, 40(1): 149-153.
ZHOU Pucheng, ZHANG Hongkun, XUE Mogen. Polarization image fusion method using color transfer and clustering-based segmentation[J]. Acta Photonica Sinica, 2011, 40(1): 149-153.
|
[26] |
李伟伟, 杨风暴, 蔺素珍, 等. 红外偏振与红外光强图像的伪彩色融合研究[J]. 红外技术, 2012, 34(2): 109-113. DOI: 10.3969/j.issn.1001-8891.2012.02.010
LI Weiwei, YANG Fengbao, LIN Suzhen, et al. Study on pseudo-color fusion of infrared polarization and intensity image[J]. Infrared Technology, 2012, 34(2): 109-113. DOI: 10.3969/j.issn.1001-8891.2012.02.010
|
[27] |
孙晶. 多波段偏振图像融合方法研究[D]. 北京: 北京理工大学, 2019.
SUN Jing. Research on Multi-band Polarization Image Fusion Method[D]. Beijing: Beijing Institute of Technology, 2019.
|
[28] |
苏子航. 多波段偏振图像信息校正与增强技术研究[D]. 北京: 北京理工大学, 2021.
SU Zihang. Research on Multi-band Polarization Image Information Correction and Enhancement Technology[D]. Beijing: Beijing Institute of Technology, 2021.
|
[29] |
HU J, MOU L, Schmitt A, et al. FusioNet: a two-stream convolutional neural network for urban scene classification using PolSAR and hyperspectral data[C]//Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), 2017: 1-4.
|
[30] |
ZHANG J, SHAO J, CHEN J, et al. PFNet: an unsupervised deep network for polarization image fusion[J]. Optics Letters, 2020, 45(6): 1507-1510. DOI: 10.1364/OL.384189
|
[31] |
WANG S, MENG J, ZHOU Y, et al. Polarization image fusion algorithm using NSCT and CNN[J]. Journal of Russian Laser Research, 2021, 42(4): 443-452. DOI: 10.1007/s10946-021-09981-2
|
[32] |
ZHANG J, SHAO J, CHEN J, et al. Polarization image fusion with self-learned fusion strategy[J]. Pattern Recognition, 2021, 118(22): 108045.
|
[33] |
XU H, SUN Y, MEI X, et al. Attention-Guided polarization image fusion using salient information distribution[J]. IEEE Transactions on Computational Imaging, 2022, 8: 1117-1130. DOI: 10.1109/TCI.2022.3228633
|
[34] |
闫德利, 申冲, 王晨光, 等. 强度图像和偏振度图像融合网络的设计[J]. 光学精密工程, 2023, 31(8): 1256-1266.
YAN Deli, SHEN Chong, WANG Chenguang, et al. Design of intensity image and polarization image fusion network[J]. Optics and Precision Engineering, 2023, 31(8): 1256-1266.
|
[35] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680.
|
[36] |
MA J, YU W, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. DOI: 10.1016/j.inffus.2018.09.004
|
[37] |
ZHAO C, WANG T, LEI B, Medical image fusion method based on dense block and deep convolutional generative adversarial network[J]. Neural Comput. & Applic., 2021, 33: 6595-6610.
|
[38] |
LIU Q, ZHOU H, XU Q, et al. PSGAN: a generative adversarial network for remote sensing image pan-sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 10227-10242. DOI: 10.1109/TGRS.2020.3042974
|
[39] |
MA J, XU H, JIANG J, et al. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980-4995. DOI: 10.1109/TIP.2020.2977573
|
[40] |
LI J, HUO H, LI C, et al. Attention FGAN: infrared and visible image fusion using attention-based generative adversarial networks[J]. IEEE Transactions on Multimedia, 2021, 23: 1383-1396. DOI: 10.1109/TMM.2020.2997127
|
[41] |
MA J, ZHANG H, SHAO Z, et al. GANMcC: a generative adversarial network with multi-classification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14.
|
[42] |
WEN Z, WU Q, LIU Z, et al. Polar-spatial feature fusion learning with variational generative-discriminative network for PolSAR classi-fication[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8914-8927. DOI: 10.1109/TGRS.2019.2923738
|
[43] |
DING X, WANG Y, FU X. Multi-polarization fusion generative adversarial networks for clear underwater imaging[J]. Optics and Lasers in Engineering, 2022, 152: 106971. DOI: 10.1016/j.optlaseng.2022.106971
|
[44] |
LIU J, DUAN J, HAO Y, et al. Semantic-guided polarization image fusion method based on a dual-discriminator GAN[J]. Optic Express, 2022, 30: 43601-43621. DOI: 10.1364/OE.472214
|
[45] |
SUN R, SUN X, CHEN F, et al. An artificial target detection method combining a polarimetric feature extractor with deep convolutional neural networks[J]. International Journal of Remote Sensing, 2020, 41: 4995-5009. DOI: 10.1080/01431161.2020.1727584
|
[46] |
ZHANG Y, Morel O, Blanchon M, et al. Exploration of deep learning based multimodal fusion for semantic road scene segmen-tation[C]//14th International Conference on Computer Vision Theory and Applications, 2019: 336-343.
|
[47] |
XIANG K, YANG K, WANG K. Polarization-driven semantic segmentation via efficient attention-bridged fusion[J]. Optic Express, 2021, 29: 4802-4820. DOI: 10.1364/OE.416130
|
[48] |
霍永胜. 基于偏振的暗通道先验去雾[J]. 物理学报, 2022, 71(14): 112-120.
HUO Yongsheng. Polarization-based research on a priori defogging of dark channel[J]. Acta Physica Sinica, 2022, 71(14): 112-120.
|
[49] |
孟宇飞, 王晓玲, 刘畅, 等. 四分暗通道均值比较法的双角度偏振图像去雾[J]. 激光与光电子学进展, 2022, 59(4): 232-240.
MENG Yufei, WANG Xiaoling, LIU Chang, et al. Dehazing of dual angle polarization image based on mean comparison of quartering dark channels[J]. Laser & Optoelectronics Progress, 2022, 59(4): 232-240.
|
[50] |
张肃, 战俊彤, 付强, 等. 基于多小波融合的偏振探测去雾技术[J]. 激光与光电子学进展, 2018, 55(12): 468-477.
ZHANG Su, ZHAN Juntong, FU Qiang, et al. Polarization detection defogging technology based on multi-wavelet fusion[J]. Laser & Optoelectronics Progress, 2018, 55(12): 468-477.
|
[51] |
HUANG F, KE C, WU X, et al. Polarization dehazing method based on spatial frequency division and fusion for a far-field and dense hazy image[J]. Applied Optics, 2021, 60: 9319-9332. DOI: 10.1364/AO.434886
|
[52] |
周文舟, 范晨, 胡小平, 等. 多尺度奇异值分解的偏振图像融合去雾算法与实验[J]. 中国光学, 2021, 14(2): 298-306.
ZHOU Wenzhou, FAN Chen, HU Xiaoping, et al. multi-scale singular value decomposition polarization image fusion defogging algorithm and experiment[J]. Chinese Optics, 2021, 14(2): 298-306.
|
[53] |
李轩, 刘飞, 邵晓鹏. 偏振三维成像技术的原理和研究进展[J]. 红外与毫米波学报, 2021, 40(2): 248-262.
LI Xuan, LIU Fei, SHAO Xiaopeng. Research progress on polarization 3D imaging technology[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 248-262.
|
[54] |
王霞, 赵雨薇, 金伟其. 融合光学偏振的三维成像技术进展(特邀)[J]. 光电技术应用, 2022, 37(5): 33-43.
WANG Xia, ZHAO Yuwei, JIN Weiqi. Overview of polarization-based three-dimensional imaging techniques(Invited)[J]. Opto-electronic Technology Application, 2022, 37(5): 33-43.
|
[55] |
杨锦发, 晏磊, 赵红颖, 等. 融合粗糙深度信息的低纹理物体偏振三维重建[J]. 红外与毫米波学报, 2019, 38(6): 819-827.
YANG Jinfa, YAN Lei, ZHAO Hongying, et al. Shape from polarization of low-texture objects with rough depth information[J]. Journal of Infrared and Millimeter Waves, 2019, 38(6): 819-827.
|
[56] |
张瑞华, 施柏鑫, 杨锦发, 等. 基于视差角和天顶角优化的偏振多视角三维重建[J]. 红外与毫米波学报, 2021, 40(1): 133-142.
ZHANG Ruihua, SHI Baixin, YANG Jinfa, et al. Polarization multi-view 3D reconstruction based on parallax angle and zenith angle optimization[J]. Journal of Infrared and Millimeter Wave, 2021, 40(1): 133-142.
|
[57] |
BA Y, Gilbert A, WANG F, et al. Deep shape from polarization[C]//Computer Vision–ECCV 2020: 16th European Conference, 2020: 554-571.
|
[58] |
陈创斌. 基于偏振信息的表面法线估计[D]. 广州: 广东工业大学, 2021.
CHEN Chuangbin. Surface Normal Estimation Based on Polarization Information[D]. Guangzhou: Guangdong University of Technology, 2021.
|
[59] |
王晓敏. 融合偏振和光场信息的低纹理目标三维重建算法研究[D]. 太原: 中北大学, 2022.
WANG Xiaomin. Research on Low Texture Target 3D Reconstruction Algorithm Integrating Polarization and Light Field Information[D]. Taiyuan: North University of China, 2022.
|
[60] |
ZENG X, LUO Y, ZHAO X, et al. An end-to-end fully-convolutional neural network for division of focal plane sensors to reconstruct S0, DoLP, and AoP[J]. Optic Express, 2019, 27: 8566-8577. DOI: 10.1364/OE.27.008566
|
[61] |
Morimatsu M, Monno Y, Tanaka M, et al. Monochrome and color polarization demosaicking using edge-aware residual interpolation [C]//2020 IEEE International Conference on Image Processing(ICIP), 2020: 2571-2575.
|
[62] |
LI N, ZHAO Y, PAN Q, et al. Full-time monocular road detection using zero-distribution prior of angle of polarization[C]//European Conference on Computer Vision (ECCV), 2020: 457-473.
|
[63] |
LI N, ZHAO Y, PAN Q, et al. Illumination-invariant road detection and tracking using LWIR polarization characteristics[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180: 357-369. DOI: 10.1016/j.isprsjprs.2021.08.022
|
[64] |
SUN Y, ZHANG J, LIANG R. Color polarization demosaicking by a convolutional neural network[J]. Optic Letter, 2021, 46: 4338-4341. DOI: 10.1364/OL.431919
|
[65] |
QIU S, FU Q, WANG C, et al. Linear polarization demosaicking for monochrome and colour polarization focal plane arrays[J]. Computer Graphics Forum, 2021, 40: 77-89. DOI: 10.1111/cgf.14204
|
[1] | LIANG Xiuman, ZHAO Jiayang, YU Haifeng. Lightweight Underwater Target Detection Algorithm Based on YOLOv8[J]. Infrared Technology , 2024, 46(9): 1015-1024. |
[2] | MOU Xingang, ZHU Tailong, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Lightweight Multiscale Downsampling Network[J]. Infrared Technology , 2024, 46(5): 501-509. |
[3] | LI Jiayang, ZHOU Yingyue, YANG Yang, LI Xiaoxia. High-Security Finger Vein Recognition System Using Lightweight Neural Network[J]. Infrared Technology , 2024, 46(2): 168-175. |
[4] | ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512. |
[5] | SHENG Dajun, ZHANG Qiang. Infrared Armored Target Detection Based on Edge-perception in Deep Neural Network[J]. Infrared Technology , 2021, 43(8): 784-791. |
[6] | YANG Qili, ZHOU Binghong, ZHENG Wei, LI Mingtao. Small Infrared Target Detection Based on Fully Convolutional Network[J]. Infrared Technology , 2021, 43(4): 349-356. |
[7] | CHEN Gao, WANG Weihua, LIN Dandan. Infrared Vehicle Target Detection Based on Convolutional Neural Network without Pre-training[J]. Infrared Technology , 2021, 43(4): 342-348. |
[8] | ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan. Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network[J]. Infrared Technology , 2021, 43(3): 251-257. |
[9] | YI Shi, ZHOU Siyao, SHEN Lian, ZHU Jinming. Vehicle-based Thermal Imaging Target Detection Method Based on Enhanced Lightweight Network[J]. Infrared Technology , 2021, 43(3): 237-245. |
[10] | SHEN Xu, MENG Wei, CHENG Xiaohui, WANG Xinzheng. Object Tracking and Recapture Model Based on Deep Detection Network Under Airborne Platform[J]. Infrared Technology , 2020, 42(7): 624-631. |