TANG Han, LI Hongbin, PENG Lang, MING Jingqian, JI Zhenbo, PU Enchang, YANG Zengpeng, BI Xiaochuan, BAO Kailin, ZHENG Wanxiang, PENG Daidong. Optical Design of Light-Small MWIR Continuous Zoom System[J]. Infrared Technology , 2023, 45(12): 1278-1285.
Citation: TANG Han, LI Hongbin, PENG Lang, MING Jingqian, JI Zhenbo, PU Enchang, YANG Zengpeng, BI Xiaochuan, BAO Kailin, ZHENG Wanxiang, PENG Daidong. Optical Design of Light-Small MWIR Continuous Zoom System[J]. Infrared Technology , 2023, 45(12): 1278-1285.

Optical Design of Light-Small MWIR Continuous Zoom System

More Information
  • Received Date: November 04, 2021
  • Revised Date: August 23, 2022
  • According to the theoretical model of continuous zoom optics, the continuous zoom calculation program is compiled, the initial solution of the zoom system is obtained, and the paraxial optical model is established. Through material selection and iterative optimization, a midwave-infrared continuous-zoom optical system consisting of only four infrared lenses and two planar mirrors was realized. The F number of the system is 4, the spectral range is 3.7 to 4.8 μm, the field of view (FOV) is 20°×16° to 2.0°×1.6°, and the maximum aperture of lenses is 71.0 mm, the total weight of the lenses is 64 g, and the system envelope is 172 mm×108 mm. The system uses two binary surfaces for the achromatic. The athermalization design of the system was realized through the rational allocation of materials and active compensation. The medium wave infrared continuous zoom optical system has the advantages of light weight, short total length, small envelope, and good image quality in the temperature range of -40℃ to 60℃.
  • [1]
    张坤杰. 国外三代红外探测器制冷机的研究现状[J]. 云光技术, 2020, 52(1): 28-37.

    ZHANG Kunjie. Research status of three generation infrared detector refrigerators abroad[J]. YUN GUANG JI SHU, 2020, 52(1): 28-37.
    [2]
    陈吕吉, 明景谦, 马琳, 等. 四片式非制冷长波红外热像仪双视场光学系统[J]. 红外技术, 2010, 32(1): 25-28. DOI: 10.3969/j.issn.1001-8891.2010.01.006

    CHEN Lvji, MING Jingqian, MA Lin, et al. A four-piece dual field of view optical system for LWIR thermal imager[J]. Infrared Technology, 2010, 32(1): 25-28. DOI: 10.3969/j.issn.1001-8891.2010.01.006
    [3]
    何红星, 赵劲松, 唐晗, 等. 一种高性能双视场长波红外光学系统[J]. 红外技术, 2017, 39(5): 394-398. http://hwjs.nvir.cn/article/id/hwjs201705002

    HE Hongxing, ZHAO Jingsong, TANG Han, et al. High performance dual fields of view LWIR optical system[J]. Infrared Technology, 2017, 39(5): 394-398. http://hwjs.nvir.cn/article/id/hwjs201705002
    [4]
    徐正奎, 于振龙, 王春兴, 等. 四片式10×中波双视场光学系统设计和分析[J]. 红外技术, 2019, 41(9): 824-830. http://hwjs.nvir.cn/article/id/hwjs201909005

    XU Zhengkui, YU Zhenlong, WANG Chunxing, et al. Four-piece medium wave dual field of view 10× optical system[J]. Infrared Technology, 2019, 41(9): 824-830. http://hwjs.nvir.cn/article/id/hwjs201909005
    [5]
    陶纯堪. 变焦距光学系统设计[M]. 北京: 国防工业出版社. 1988.

    TAO C K. Zoom Focus Optics System Design[M]. Beijing: National Defense Industry Press, 1988.
    [6]
    宋菲君, 陈笑, 刘畅. 近代光学系统设计概论[M]. 北京: 科学出版社, 2019.

    SONG Feijun, CHEN Xiao, LIU Chang. Introduction to Modern Optical System Design[M]. Beijing: Science Press, 2019.
    [7]
    张发平, 张华卫. 基于二元衍射面的长波无热化光学系统设计[J]. 红外技术, 2020, 42(1): 25- 29. http://hwjs.nvir.cn/article/id/hwjs202001004

    ZHANG Faping, ZHANG Huawei. Design of long-wave athermal optical system based on binary diffractions surface[J]. Infrared Technology, 2020, 42(1): 25-29. http://hwjs.nvir.cn/article/id/hwjs202001004
    [8]
    王春艳, 王志坚, 周庆才. 应用动态光学理论求解变焦光学系统补偿组凸轮曲线[J]. 光学学报, 2006, 26(6): 891-894. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200606019.htm

    WANG Chunyan, WANG Zhijian, ZHOU Qingcai. Solving the cam curve of the compensating group about zoom lens using dynamic optical theory[J]. Acta Optica Sinica, 2006, 26(6): 891-894. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200606019.htm
  • Related Articles

    [1]WU Wenfei, LI Zhengqiang, YAO Qian, ZHOU Shikai, XU Hua, CHEN Zhenting, JIANG Qifeng. Simplified Calculation Method of FY-3D Satellite MERSI-Ⅱ Thermal Infrared Channel Split-Window Simulation[J]. Infrared Technology , 2025, 47(4): 410-420.
    [2]MAO Jingxiang, GUO Jianhua, LI Lihua, KONG Linglei, WANG Zhengkai. Calculation of Parameters for Long Wave Infrared FPA Detectors Applied in Low-temperature Background[J]. Infrared Technology , 2023, 45(5): 553-559.
    [3]CHI Guochun, SUN Hao, WANG Liang, LIU Xiangde, RAO Qichao. The Analysis of Cooling Parameters of Infrared Detector Assembly[J]. Infrared Technology , 2019, 41(7): 683-688.
    [4]WEI Xiaomei, YANG Jian, FENG Gang, JIA Tao, MENG Jin, SU Xiaohui, ZHANG Xiang, KANG LI, CAO Honghong. Design of Infrared Multi-parameters Analysis Meter for Coal[J]. Infrared Technology , 2016, 38(6): 509-513.
    [5]WU Xiao-di, YANG Ming, LV Xiang-yin, YANG Hua. Effect of Parameters of Thermal Control Coating on Dynamic Radiation Characteristic of Satellite[J]. Infrared Technology , 2009, 31(12): 727-730. DOI: 10.3969/j.issn.1001-8891.2009.12.012
    [6]LI Wei, SHEN Zhen-kang, LI Biao. Solving Parameters of Affine Transformation Based on ACO[J]. Infrared Technology , 2007, 29(11): 662-665. DOI: 10.3969/j.issn.1001-8891.2007.11.011
    [7]The Study of the Definition and Measurement Methods of Characteristic Parameters of IRFPA[J]. Infrared Technology , 2007, 29(4): 211-214. DOI: 10.3969/j.issn.1001-8891.2007.04.006
    [8]WANG Qun, ZHU Mu-dan, ZHAO Liang. Parameter Test of Infrared Detectors[J]. Infrared Technology , 2006, 28(10): 599-601. DOI: 10.3969/j.issn.1001-8891.2006.10.010
    [9]Evaluation of Binary Optics Manufacturing Parameters[J]. Infrared Technology , 2004, 26(6): 13-16. DOI: 10.3969/j.issn.1001-8891.2004.06.004
    [10]A Study about the Pyroelectric IR Detector's Parameters Measurement[J]. Infrared Technology , 2002, 24(3): 41-43. DOI: 10.3969/j.issn.1001-8891.2002.03.011

Catalog

    Article views (1745) PDF downloads (134) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return