LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277.
Citation: LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277.

Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots

More Information
  • Received Date: October 08, 2023
  • Revised Date: December 01, 2023
  • Quantum dots (QDs) are widely used in photoelectric detection, biomedicine, new energy, and other fields because of their quantum limitations, size, and surface effects. Recent years have seen midwave infrared (MWIR) quantum dots (QDs) become a focal point in infrared research. By adjusting and controlling their size, these QDs can extend their absorption wavelengths in the infrared spectrum. Therefore, the successful preparation of infrared QD materials and devices is crucial for infrared imaging, guidance, search, and tracking. This study first introduces the preparation and synthesis technology of five types of MWIR QDs materials, HgSe, HgTe, PbSe, Ag2Se, and HgCdTe, analyzes the size and morphology, lattice fringe, and infrared absorption spectrum characteristics of the QDs, and then summarizes the domestic and foreign MWIR QDs detectors. The device structures and preparation methods of the detector are summarized, and the photoelectric performance parameters, such as responsivity, detectivity, and response time, of the detectors are compared and analyzed. Finally, the development of MWIR QDs was discussed.
  • [1]
    钟和甫, 唐利斌, 余黎静, 等. 量子点合成及其光电功能薄膜研究进展[J]. 红外技术, 2022, 44(2): 103. http://hwjs.nvir.cn/article/id/970e7470-f304-4c45-829c-2b426518c568

    ZHONG H F, TANG L B, YU L J, et al. Research progress of quantum dots synthesis and their photoelectric functional films[J]. Infrared Technology, 2022, 44(2): 103. http://hwjs.nvir.cn/article/id/970e7470-f304-4c45-829c-2b426518c568
    [2]
    ZHANG W, LIM H, Tsao S, et al. InAs quantum dot infrared photodetectors (QDIP) on InP by MOCVD[C]//Infrared Spaceborne Remote Sensing XII. of SPIE, 2004, 5543: 22-30.
    [3]
    Gunapala S D, Bandara S V, Hill C J, et al. Quantum wells to quantum dots: 640×512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array[C]//Infrared Detectors and Focal Plane Arrays Ⅷ. of SPIE, 2006, 6295: 629501.
    [4]
    Vatansever F, Hamblin M R. Far infrared radiation (FIR): its biological effects and medical applications[J]. Photonics & Lasers in Medicine, 2012, 1(4): 255-266.
    [5]
    Lhuillier E, Guyot-Sionnest P. Recent progresses in mid infrared nanocrystal optoelectronics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(5): 1-8.
    [6]
    Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154.
    [7]
    LU H, Carroll G M, Neale N R, et al. Infrared quantum dots: progress, challenges, and opportunities[J]. ACS Nano, 2019, 13(2): 939-953.
    [8]
    LIU D, WEN S, GUO Y, et al. Synthesis of HgTe colloidal quantum dots for infrared photodetector[J]. Materials Letters, 2021, 291: 129523. DOI: 10.1016/j.matlet.2021.129523
    [9]
    Nakotte T, Munyan S G, Murphy J W, et al. Colloidal quantum dot based infrared detectors: extending to the mid-infrared and moving from the lab to the field[J]. Journal of Materials Chemistry C, 2022, 10(3): 790-804. DOI: 10.1039/D1TC05359K
    [10]
    Keuleyan S, Lhuillier E, Brajuskovic V, et al. Mid-infrared HgTe colloidal quantum dot photodetectors[J]. Nature Photonics, 2011, 5(8): 489-493. DOI: 10.1038/nphoton.2011.142
    [11]
    ZHANG H, Peterson J C, Guyot-Sionnest P. Intraband transition of HgTe nanocrystals for long-wave infrared detection at 12 μm[J]. ACS Nano, 2023, 17(8): 7530-7538. DOI: 10.1021/acsnano.2c12636
    [12]
    HUO N, Gupta S, Konstantatos G. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 μm[J]. Advanced Materials, 2017, 29(17): 1606576. DOI: 10.1002/adma.201606576
    [13]
    Kovalenko M V, Kaufmann E, D Pachinger, et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations[J]. Journal of the American Chemical Society, 2006, 128(11): 3516-3523. DOI: 10.1021/ja058440j
    [14]
    Keuleyan S, Lhuillier E, Guyot-Sionnest P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection[J]. Journal of the American Chemical Society, 2011, 133(41): 16422-16424. DOI: 10.1021/ja2079509
    [15]
    SHEN G, Guyot-Sionnest P. HgTe/CdTe and HgSe/CdX (X= S, Se, and Te) core/shell mid-infrared quantum dots[J]. Chemistry of Materials, 2018, 31(1): 286-293.
    [16]
    Cryer M E, Halpert J E. 300 nm spectral resolution in the mid-infrared with robust, high responsivity flexible colloidal quantum dot devices at room temperature[J]. ACS Photonics, 2018, 5(8): 3009-3015. DOI: 10.1021/acsphotonics.8b00738
    [17]
    Lhuillier E, Keuleyan S, Liu H, et al. Colloidal HgTe material for low-cost detection into the MWIR[J]. Journal of Electronic Materials, 2012, 41(10): 2725-2729. DOI: 10.1007/s11664-012-2006-9
    [18]
    Lhuillier E, Keuleyan S, Rekemeyer P, et al. Thermal properties of mid-infrared colloidal quantum dot detectors[J]. Journal of Applied Physics, 2011, 110(3): 033110. DOI: 10.1063/1.3619857
    [19]
    Lhuillier E, Keuleyan S, Guyot-Sionnest P. Colloidal quantum dots for mid-IR applications[J]. Infrared Physics & Technology, 2013, 59: 133-136.
    [20]
    Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm[J]. ACS Nano, 2014, 8(8): 8676-8682. DOI: 10.1021/nn503805h
    [21]
    TANG X, TANG X B, Lai K W C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films[J]. ACS Photonics, 2016, 3(12): 2396-2404. DOI: 10.1021/acsphotonics.6b00620
    [22]
    Lhuillier E, Scarafagio M, Hease P, et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz[J]. Nano Letters, 2016, 16(2): 1282-1286. DOI: 10.1021/acs.nanolett.5b04616
    [23]
    Livache C, Martinez B, Goubet N, et al. A colloidal quantum dot infrared photodetector and its use for intraband detection[J]. Nature Communications, 2019, 10(1): 1-10. DOI: 10.1038/s41467-018-07882-8
    [24]
    ZHAO X, MU G, TANG X, et al. Mid-IR intraband photodetectors with colloidal quantum dots[J]. Coatings, 2022, 12(4): 467. DOI: 10.3390/coatings12040467
    [25]
    TANG X, WU G F, Lai K W C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared[J]. Journal of Materials Chemistry C, 2017, 5(2): 362-369. DOI: 10.1039/C6TC04248A
    [26]
    DENG Z, Jeong K S, Guyot-Sionnest P. Colloidal quantum dots intraband photodetectors[J]. ACS Nano, 2014, 8(11): 11707-11714. DOI: 10.1021/nn505092a
    [27]
    Khalili A, Cavallo M, Dang T H, et al. Mid-wave infrared sensitized InGaAs using intraband transition in doped colloidal Ⅱ-Ⅵ nanocrystals[J]. The Journal of Chemical Physics, 2023, 158(9): 094702. DOI: 10.1063/5.0141328
    [28]
    Balakrishnan J, Sreeshma D, Siddesh B M, et al. Ternary alloyed HgCdTe nanocrystals for short-wave and mid-wave infrared region optoelectronic applications[J]. Nano Express, 2020, 1(2): 020015. DOI: 10.1088/2632-959X/aba230
    [29]
    Chatterjee A, Abhale A, Pendyala N, et al. Group Ⅱ-Ⅵ semiconductor quantum dot heterojunction photodiode for mid wave infrared detection[J]. Optoelectronics Letters, 2020, 16(4): 290-292. DOI: 10.1007/s11801-020-9155-5
    [30]
    Chatterjee A, Balakrishnan J, Pendyala N B, et al. Room temperature operated HgCdTe colloidal quantum dot infrared focal plane array using shockwave dispersion technique[J]. Applied Surface Science Advances, 2020, 1: 100024. DOI: 10.1016/j.apsadv.2020.100024
    [31]
    Pietryga J M, Schaller R D, Werder D, et al. Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots[J]. Journal of the American Chemical Society, 2004, 126(38): 11752-11753. DOI: 10.1021/ja047659f
    [32]
    Palosz W, Trivedi S, DeCuir Jr E, et al. Synthesis and characterization of large PbSe colloidal quantum dots[J]. Particle & Particle Systems Characterization, 2021, 38(6): 2000285.
    [33]
    Dolatyari M, Rostami A, Mathur S, et al. Trap engineering in solution processed PbSe quantum dots for high-speed MID-infrared photo- detectors[J]. Journal of Materials Chemistry C, 2019, 7(19): 5658-5669. DOI: 10.1039/C8TC06093B
    [34]
    PENG S, LI H, ZHANG C, et al. Promoted mid-infrared photodetection of PbSe film by iodine sensitization based on chemical bath deposition[J]. Nanomaterials, 2022, 12(9): 1391. DOI: 10.3390/nano12091391
    [35]
    Sahu A, Khare A, Deng D D, et al. Quantum confinement in silver selenide semiconductor nanocrystals[J]. Chemical Communications, 2012, 48(44): 5458-5460. DOI: 10.1039/c2cc30539a
    [36]
    Park M, Choi D, Choi Y, et al. Mid-infrared intraband transition of metal excess colloidal Ag2Se nanocrystals[J]. ACS Photonics, 2018, 5(5): 1907-1911. DOI: 10.1021/acsphotonics.8b00291
    [37]
    QU J, Goubet N, Livache C, et al. Intraband mid-infrared transitions in Ag2Se nanocrystals: potential and limitations for Hg-free low-cost photodetection[J]. The Journal of Physical Chemistry C, 2018, 122(31): 18161-18167. DOI: 10.1021/acs.jpcc.8b05699
    [38]
    Hafiz S B, Scimeca M R, Zhao P, et al. Silver selenide colloidal quantum dots for mid-wavelength infrared photodetection[J]. ACS Applied Nano Materials, 2019, 2(3): 1631-1636. DOI: 10.1021/acsanm.9b00069
    [39]
    Hafiz S B, Al Mahfuz M M, Scimeca M R, et al. Ligand engineering of mid-infrared Ag2Se colloidal quantum dots[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 124: 114223. DOI: 10.1016/j.physe.2020.114223
    [40]
    Son J, Choi D, Park M, et al. Transformation of colloidal quantum dot: from intraband transition to localized surface plasmon resonance[J]. Nano Letters, 2020, 20(7): 4985-4992. DOI: 10.1021/acs.nanolett.0c01080
    [41]
    Hafiz S B, Al Mahfuz M M, Ko D K. Vertically stacked intraband quantum dot devices for mid-wavelength infrared photodetection[J]. ACS Applied Materials & Interfaces, 2020, 13(1): 937-943.
    [42]
    Hafiz S B, Al Mahfuz M M, Lee S, et al. Midwavelength infrared p-n heterojunction diodes based on intraband colloidal quantum dots[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49043-49049.
    [43]
    王令仕. 中红外HgSe胶体量子点的合成及其薄膜特性的研究[D]. 郑州: 河南大学, 2022.

    WANG Lingshi. Synthesis of mid-infrared HgSe colloidal quantum dots and study of their thin film properties [D]. Zhengzhou: Henan University, 2022.
    [44]
    Selvig E, Hadzialic S, Skauli T, et al. Growth of HgTe nanowires[J]. Physica Scripta, 2006, 2006(T126): 115.
    [45]
    Rogach A, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room‐temperature infrared luminescence[J]. Advanced Materials, 1999, 11(7): 552-555. DOI: 10.1002/(SICI)1521-4095(199905)11:7<552::AID-ADMA552>3.0.CO;2-Q
    [46]
    Harrison M T, Kershaw S V, Rogach A L, et al. Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals[J]. Advanced Materials, 2000, 12(2): 123-125. DOI: 10.1002/(SICI)1521-4095(200001)12:2<123::AID-ADMA123>3.0.CO;2-H
    [47]
    Kovalenko M V, Kaufmann E, Pachinger D, et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations[J]. Journal of the American Chemical Society, 2006, 128(11): 3516-3517. DOI: 10.1021/ja058440j
    [48]
    Wise F W. Lead salt quantum dots: the limit of strong quantum confinement[J]. Accounts of Chemical Research, 2000, 33(11): 773-780. DOI: 10.1021/ar970220q
    [49]
    李燕兰, 高达, 李震, 等. 大尺寸碲镉汞材料研究现状与趋势[J]. 激光与红外, 2022, 52(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208016.htm

    LI Y L, GAO D, LI Z, et al. Status and development trends of large area HgCdTe[J]. Laser & Infrared, 2022, 52(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208016.htm
    [50]
    LI L, XIONG D, WEN J, et al. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector[J]. Infrared Physics & Technology, 2016, 79: 45-49.
    [51]
    Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Infrared Technology and Applications XLII of SPIE, 2016, 9819: 333-341.
    [52]
    Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low-cost colloidal quantum dot films[C]//Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications of SPIE, 2016, 9933: 993303.
    [53]
    TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 2019, 13(4): 277-282. DOI: 10.1038/s41566-019-0362-1
    [54]
    CHEN M, LAN X, TANG X, et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors[J]. ACS Photonics, 2019, 6(9): 2358-2365. DOI: 10.1021/acsphotonics.9b01050
    [55]
    Chatterjee A, Jagtap A, Pendyala N, et al. HgCdTe quantum dot over interdigitated electrode for mid-wave infrared photon detection and its noise characterization[J]. International Journal of Nanoscience, 2020, 19(3): 1950020. DOI: 10.1142/S0219581X19500200
    [56]
    Ackerman M M, Tang X, Guyot-Sionnest P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors[J]. ACS Nano, 2018, 12(7): 7264-7271. DOI: 10.1021/acsnano.8b03425
    [57]
    Lhuillier E, Keuleyan S, Zolotavin P, et al. Mid-infrared HgTe/As2S3 field effect transistors and photodetectors[J]. Advanced Materials, 2013, 25(1): 137-141. DOI: 10.1002/adma.201203012
    [58]
    TANG X, Ackerman M M, Guyot-Sionnest P. Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices[J]. ACS Nano, 2018, 12(7): 7362-7370. DOI: 10.1021/acsnano.8b03871
    [59]
    Ramiro I, Özdemir O, Christodoulou S, et al. Mid-and long-wave infrared optoelectronics via intraband transitions in PbS colloidal quantum dots[J]. Nano Letters, 2020, 20(2): 1003-1008. DOI: 10.1021/acs.nanolett.9b04130
    [60]
    叶振华, 李杨, 胡伟达, 等. 同时模式的中波/长波碲镉汞双色红外探测器[J]. 红外与毫米波学报, 2012, 31(6): 497-500. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201206005.htm

    YE Z H, LI Y, HU W D, et al. Simultaneous mode MW/LW two color HgCdTe infrared detector[J]. J. Infrared Millim. Waves, 2012, 31(6): 497-500. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201206005.htm
    [61]
    HUANG J, GUO D, DENG Z, et al. Midwave infrared quantum dot quantum cascade photodetector monolithically grown on silicon substrate[J]. Journal of Lightwave Technology, 2018, 36(18): 4033-4038. DOI: 10.1109/JLT.2018.2859250
    [62]
    ZHU Y, ZHAI S, LIU J, et al. Mid-wave/long-wave dual-color infrared quantum cascade detector enhanced by antenna-coupled microcavity[J]. Optics Express, 2021, 29(23): 37327-37335. DOI: 10.1364/OE.438919
    [63]
    Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Applied Physics Letters, 2015, 107(25): 253104. DOI: 10.1063/1.4938135
    [64]
    De Souza C F, Alizadeh A, Nair S, et al. Mechanism of IR photoresponse in nanopatterned InAs/GaAs quantum dot pin photodiodes[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 832-836. DOI: 10.1109/JQE.2009.2035360
    [65]
    Motmaen A, Rostami A, Matloub S. Ultra high-efficiency integrated mid infrared to visible up-conversion system[J]. Scientific Reports, 2020, 10(1): 1-10. DOI: 10.1038/s41598-019-56847-4
    [66]
    ZHANG S, MU G, CAO J, et al. Single-/fused-band dual-mode mid-infrared imaging with colloidal quantum-dot triple-junctions[J]. Photonics Research, 2022, 10(8): 1987-1995. DOI: 10.1364/PRJ.458351
    [67]
    谭伊玫, 张硕, 罗宇宁, 等. 640×512规模碲化汞量子点中波红外焦平面阵列(特邀)[J]. 红外与激光工程, 2023, 52(7): 20230377. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202307001.htm

    TAN Y M, ZHANG S, LUO Y N, et al. 640×512 HgTe colloidal quantum-dot mid-wave infrared focal plane array (invited)[J]. Infrared and Laser Engineering, 2023, 52(7): 20230377. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202307001.htm
  • Related Articles

    [1]YE Ye. A Deep Learning Method for Hyperspectral Detection of Heavy Metal Contaminants in Soil Based on Attention Mechanism[J]. Infrared Technology , 2025, 47(4): 453-458.
    [2]ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366.
    [3]LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379.
    [4]WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014.
    [5]ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451.
    [6]LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.
    [7]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [8]WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177.
    [9]LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574.
    [10]WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return