Citation: | LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277. |
[1] |
钟和甫, 唐利斌, 余黎静, 等. 量子点合成及其光电功能薄膜研究进展[J]. 红外技术, 2022, 44(2): 103. http://hwjs.nvir.cn/article/id/970e7470-f304-4c45-829c-2b426518c568
ZHONG H F, TANG L B, YU L J, et al. Research progress of quantum dots synthesis and their photoelectric functional films[J]. Infrared Technology, 2022, 44(2): 103. http://hwjs.nvir.cn/article/id/970e7470-f304-4c45-829c-2b426518c568
|
[2] |
ZHANG W, LIM H, Tsao S, et al. InAs quantum dot infrared photodetectors (QDIP) on InP by MOCVD[C]//Infrared Spaceborne Remote Sensing XII. of SPIE, 2004, 5543: 22-30.
|
[3] |
Gunapala S D, Bandara S V, Hill C J, et al. Quantum wells to quantum dots: 640×512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array[C]//Infrared Detectors and Focal Plane Arrays Ⅷ. of SPIE, 2006, 6295: 629501.
|
[4] |
Vatansever F, Hamblin M R. Far infrared radiation (FIR): its biological effects and medical applications[J]. Photonics & Lasers in Medicine, 2012, 1(4): 255-266.
|
[5] |
Lhuillier E, Guyot-Sionnest P. Recent progresses in mid infrared nanocrystal optoelectronics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(5): 1-8.
|
[6] |
Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154.
|
[7] |
LU H, Carroll G M, Neale N R, et al. Infrared quantum dots: progress, challenges, and opportunities[J]. ACS Nano, 2019, 13(2): 939-953.
|
[8] |
LIU D, WEN S, GUO Y, et al. Synthesis of HgTe colloidal quantum dots for infrared photodetector[J]. Materials Letters, 2021, 291: 129523. DOI: 10.1016/j.matlet.2021.129523
|
[9] |
Nakotte T, Munyan S G, Murphy J W, et al. Colloidal quantum dot based infrared detectors: extending to the mid-infrared and moving from the lab to the field[J]. Journal of Materials Chemistry C, 2022, 10(3): 790-804. DOI: 10.1039/D1TC05359K
|
[10] |
Keuleyan S, Lhuillier E, Brajuskovic V, et al. Mid-infrared HgTe colloidal quantum dot photodetectors[J]. Nature Photonics, 2011, 5(8): 489-493. DOI: 10.1038/nphoton.2011.142
|
[11] |
ZHANG H, Peterson J C, Guyot-Sionnest P. Intraband transition of HgTe nanocrystals for long-wave infrared detection at 12 μm[J]. ACS Nano, 2023, 17(8): 7530-7538. DOI: 10.1021/acsnano.2c12636
|
[12] |
HUO N, Gupta S, Konstantatos G. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 μm[J]. Advanced Materials, 2017, 29(17): 1606576. DOI: 10.1002/adma.201606576
|
[13] |
Kovalenko M V, Kaufmann E, D Pachinger, et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations[J]. Journal of the American Chemical Society, 2006, 128(11): 3516-3523. DOI: 10.1021/ja058440j
|
[14] |
Keuleyan S, Lhuillier E, Guyot-Sionnest P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection[J]. Journal of the American Chemical Society, 2011, 133(41): 16422-16424. DOI: 10.1021/ja2079509
|
[15] |
SHEN G, Guyot-Sionnest P. HgTe/CdTe and HgSe/CdX (X= S, Se, and Te) core/shell mid-infrared quantum dots[J]. Chemistry of Materials, 2018, 31(1): 286-293.
|
[16] |
Cryer M E, Halpert J E. 300 nm spectral resolution in the mid-infrared with robust, high responsivity flexible colloidal quantum dot devices at room temperature[J]. ACS Photonics, 2018, 5(8): 3009-3015. DOI: 10.1021/acsphotonics.8b00738
|
[17] |
Lhuillier E, Keuleyan S, Liu H, et al. Colloidal HgTe material for low-cost detection into the MWIR[J]. Journal of Electronic Materials, 2012, 41(10): 2725-2729. DOI: 10.1007/s11664-012-2006-9
|
[18] |
Lhuillier E, Keuleyan S, Rekemeyer P, et al. Thermal properties of mid-infrared colloidal quantum dot detectors[J]. Journal of Applied Physics, 2011, 110(3): 033110. DOI: 10.1063/1.3619857
|
[19] |
Lhuillier E, Keuleyan S, Guyot-Sionnest P. Colloidal quantum dots for mid-IR applications[J]. Infrared Physics & Technology, 2013, 59: 133-136.
|
[20] |
Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm[J]. ACS Nano, 2014, 8(8): 8676-8682. DOI: 10.1021/nn503805h
|
[21] |
TANG X, TANG X B, Lai K W C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films[J]. ACS Photonics, 2016, 3(12): 2396-2404. DOI: 10.1021/acsphotonics.6b00620
|
[22] |
Lhuillier E, Scarafagio M, Hease P, et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz[J]. Nano Letters, 2016, 16(2): 1282-1286. DOI: 10.1021/acs.nanolett.5b04616
|
[23] |
Livache C, Martinez B, Goubet N, et al. A colloidal quantum dot infrared photodetector and its use for intraband detection[J]. Nature Communications, 2019, 10(1): 1-10. DOI: 10.1038/s41467-018-07882-8
|
[24] |
ZHAO X, MU G, TANG X, et al. Mid-IR intraband photodetectors with colloidal quantum dots[J]. Coatings, 2022, 12(4): 467. DOI: 10.3390/coatings12040467
|
[25] |
TANG X, WU G F, Lai K W C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared[J]. Journal of Materials Chemistry C, 2017, 5(2): 362-369. DOI: 10.1039/C6TC04248A
|
[26] |
DENG Z, Jeong K S, Guyot-Sionnest P. Colloidal quantum dots intraband photodetectors[J]. ACS Nano, 2014, 8(11): 11707-11714. DOI: 10.1021/nn505092a
|
[27] |
Khalili A, Cavallo M, Dang T H, et al. Mid-wave infrared sensitized InGaAs using intraband transition in doped colloidal Ⅱ-Ⅵ nanocrystals[J]. The Journal of Chemical Physics, 2023, 158(9): 094702. DOI: 10.1063/5.0141328
|
[28] |
Balakrishnan J, Sreeshma D, Siddesh B M, et al. Ternary alloyed HgCdTe nanocrystals for short-wave and mid-wave infrared region optoelectronic applications[J]. Nano Express, 2020, 1(2): 020015. DOI: 10.1088/2632-959X/aba230
|
[29] |
Chatterjee A, Abhale A, Pendyala N, et al. Group Ⅱ-Ⅵ semiconductor quantum dot heterojunction photodiode for mid wave infrared detection[J]. Optoelectronics Letters, 2020, 16(4): 290-292. DOI: 10.1007/s11801-020-9155-5
|
[30] |
Chatterjee A, Balakrishnan J, Pendyala N B, et al. Room temperature operated HgCdTe colloidal quantum dot infrared focal plane array using shockwave dispersion technique[J]. Applied Surface Science Advances, 2020, 1: 100024. DOI: 10.1016/j.apsadv.2020.100024
|
[31] |
Pietryga J M, Schaller R D, Werder D, et al. Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots[J]. Journal of the American Chemical Society, 2004, 126(38): 11752-11753. DOI: 10.1021/ja047659f
|
[32] |
Palosz W, Trivedi S, DeCuir Jr E, et al. Synthesis and characterization of large PbSe colloidal quantum dots[J]. Particle & Particle Systems Characterization, 2021, 38(6): 2000285.
|
[33] |
Dolatyari M, Rostami A, Mathur S, et al. Trap engineering in solution processed PbSe quantum dots for high-speed MID-infrared photo- detectors[J]. Journal of Materials Chemistry C, 2019, 7(19): 5658-5669. DOI: 10.1039/C8TC06093B
|
[34] |
PENG S, LI H, ZHANG C, et al. Promoted mid-infrared photodetection of PbSe film by iodine sensitization based on chemical bath deposition[J]. Nanomaterials, 2022, 12(9): 1391. DOI: 10.3390/nano12091391
|
[35] |
Sahu A, Khare A, Deng D D, et al. Quantum confinement in silver selenide semiconductor nanocrystals[J]. Chemical Communications, 2012, 48(44): 5458-5460. DOI: 10.1039/c2cc30539a
|
[36] |
Park M, Choi D, Choi Y, et al. Mid-infrared intraband transition of metal excess colloidal Ag2Se nanocrystals[J]. ACS Photonics, 2018, 5(5): 1907-1911. DOI: 10.1021/acsphotonics.8b00291
|
[37] |
QU J, Goubet N, Livache C, et al. Intraband mid-infrared transitions in Ag2Se nanocrystals: potential and limitations for Hg-free low-cost photodetection[J]. The Journal of Physical Chemistry C, 2018, 122(31): 18161-18167. DOI: 10.1021/acs.jpcc.8b05699
|
[38] |
Hafiz S B, Scimeca M R, Zhao P, et al. Silver selenide colloidal quantum dots for mid-wavelength infrared photodetection[J]. ACS Applied Nano Materials, 2019, 2(3): 1631-1636. DOI: 10.1021/acsanm.9b00069
|
[39] |
Hafiz S B, Al Mahfuz M M, Scimeca M R, et al. Ligand engineering of mid-infrared Ag2Se colloidal quantum dots[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 124: 114223. DOI: 10.1016/j.physe.2020.114223
|
[40] |
Son J, Choi D, Park M, et al. Transformation of colloidal quantum dot: from intraband transition to localized surface plasmon resonance[J]. Nano Letters, 2020, 20(7): 4985-4992. DOI: 10.1021/acs.nanolett.0c01080
|
[41] |
Hafiz S B, Al Mahfuz M M, Ko D K. Vertically stacked intraband quantum dot devices for mid-wavelength infrared photodetection[J]. ACS Applied Materials & Interfaces, 2020, 13(1): 937-943.
|
[42] |
Hafiz S B, Al Mahfuz M M, Lee S, et al. Midwavelength infrared p-n heterojunction diodes based on intraband colloidal quantum dots[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49043-49049.
|
[43] |
王令仕. 中红外HgSe胶体量子点的合成及其薄膜特性的研究[D]. 郑州: 河南大学, 2022.
WANG Lingshi. Synthesis of mid-infrared HgSe colloidal quantum dots and study of their thin film properties [D]. Zhengzhou: Henan University, 2022.
|
[44] |
Selvig E, Hadzialic S, Skauli T, et al. Growth of HgTe nanowires[J]. Physica Scripta, 2006, 2006(T126): 115.
|
[45] |
Rogach A, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room‐temperature infrared luminescence[J]. Advanced Materials, 1999, 11(7): 552-555. DOI: 10.1002/(SICI)1521-4095(199905)11:7<552::AID-ADMA552>3.0.CO;2-Q
|
[46] |
Harrison M T, Kershaw S V, Rogach A L, et al. Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals[J]. Advanced Materials, 2000, 12(2): 123-125. DOI: 10.1002/(SICI)1521-4095(200001)12:2<123::AID-ADMA123>3.0.CO;2-H
|
[47] |
Kovalenko M V, Kaufmann E, Pachinger D, et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations[J]. Journal of the American Chemical Society, 2006, 128(11): 3516-3517. DOI: 10.1021/ja058440j
|
[48] |
Wise F W. Lead salt quantum dots: the limit of strong quantum confinement[J]. Accounts of Chemical Research, 2000, 33(11): 773-780. DOI: 10.1021/ar970220q
|
[49] |
李燕兰, 高达, 李震, 等. 大尺寸碲镉汞材料研究现状与趋势[J]. 激光与红外, 2022, 52(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208016.htm
LI Y L, GAO D, LI Z, et al. Status and development trends of large area HgCdTe[J]. Laser & Infrared, 2022, 52(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208016.htm
|
[50] |
LI L, XIONG D, WEN J, et al. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector[J]. Infrared Physics & Technology, 2016, 79: 45-49.
|
[51] |
Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Infrared Technology and Applications XLII of SPIE, 2016, 9819: 333-341.
|
[52] |
Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low-cost colloidal quantum dot films[C]//Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications of SPIE, 2016, 9933: 993303.
|
[53] |
TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 2019, 13(4): 277-282. DOI: 10.1038/s41566-019-0362-1
|
[54] |
CHEN M, LAN X, TANG X, et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors[J]. ACS Photonics, 2019, 6(9): 2358-2365. DOI: 10.1021/acsphotonics.9b01050
|
[55] |
Chatterjee A, Jagtap A, Pendyala N, et al. HgCdTe quantum dot over interdigitated electrode for mid-wave infrared photon detection and its noise characterization[J]. International Journal of Nanoscience, 2020, 19(3): 1950020. DOI: 10.1142/S0219581X19500200
|
[56] |
Ackerman M M, Tang X, Guyot-Sionnest P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors[J]. ACS Nano, 2018, 12(7): 7264-7271. DOI: 10.1021/acsnano.8b03425
|
[57] |
Lhuillier E, Keuleyan S, Zolotavin P, et al. Mid-infrared HgTe/As2S3 field effect transistors and photodetectors[J]. Advanced Materials, 2013, 25(1): 137-141. DOI: 10.1002/adma.201203012
|
[58] |
TANG X, Ackerman M M, Guyot-Sionnest P. Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices[J]. ACS Nano, 2018, 12(7): 7362-7370. DOI: 10.1021/acsnano.8b03871
|
[59] |
Ramiro I, Özdemir O, Christodoulou S, et al. Mid-and long-wave infrared optoelectronics via intraband transitions in PbS colloidal quantum dots[J]. Nano Letters, 2020, 20(2): 1003-1008. DOI: 10.1021/acs.nanolett.9b04130
|
[60] |
叶振华, 李杨, 胡伟达, 等. 同时模式的中波/长波碲镉汞双色红外探测器[J]. 红外与毫米波学报, 2012, 31(6): 497-500. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201206005.htm
YE Z H, LI Y, HU W D, et al. Simultaneous mode MW/LW two color HgCdTe infrared detector[J]. J. Infrared Millim. Waves, 2012, 31(6): 497-500. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201206005.htm
|
[61] |
HUANG J, GUO D, DENG Z, et al. Midwave infrared quantum dot quantum cascade photodetector monolithically grown on silicon substrate[J]. Journal of Lightwave Technology, 2018, 36(18): 4033-4038. DOI: 10.1109/JLT.2018.2859250
|
[62] |
ZHU Y, ZHAI S, LIU J, et al. Mid-wave/long-wave dual-color infrared quantum cascade detector enhanced by antenna-coupled microcavity[J]. Optics Express, 2021, 29(23): 37327-37335. DOI: 10.1364/OE.438919
|
[63] |
Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Applied Physics Letters, 2015, 107(25): 253104. DOI: 10.1063/1.4938135
|
[64] |
De Souza C F, Alizadeh A, Nair S, et al. Mechanism of IR photoresponse in nanopatterned InAs/GaAs quantum dot pin photodiodes[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 832-836. DOI: 10.1109/JQE.2009.2035360
|
[65] |
Motmaen A, Rostami A, Matloub S. Ultra high-efficiency integrated mid infrared to visible up-conversion system[J]. Scientific Reports, 2020, 10(1): 1-10. DOI: 10.1038/s41598-019-56847-4
|
[66] |
ZHANG S, MU G, CAO J, et al. Single-/fused-band dual-mode mid-infrared imaging with colloidal quantum-dot triple-junctions[J]. Photonics Research, 2022, 10(8): 1987-1995. DOI: 10.1364/PRJ.458351
|
[67] |
谭伊玫, 张硕, 罗宇宁, 等. 640×512规模碲化汞量子点中波红外焦平面阵列(特邀)[J]. 红外与激光工程, 2023, 52(7): 20230377. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202307001.htm
TAN Y M, ZHANG S, LUO Y N, et al. 640×512 HgTe colloidal quantum-dot mid-wave infrared focal plane array (invited)[J]. Infrared and Laser Engineering, 2023, 52(7): 20230377. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202307001.htm
|
[1] | YE Ye. A Deep Learning Method for Hyperspectral Detection of Heavy Metal Contaminants in Soil Based on Attention Mechanism[J]. Infrared Technology , 2025, 47(4): 453-458. |
[2] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[3] | LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379. |
[4] | WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014. |
[5] | ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451. |
[6] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[7] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[8] | WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177. |
[9] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |
[10] | WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271. |