Citation: | ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451. |
[1] |
王灿, 卜乐平. 基于卷积神经网络的目标检测算法综述[J]. 舰船电子工程, 2021, 41(9): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC202109036.htm
WANG Can, BU Leping. Overview of target detection algorithms based on convolutional neural networks[J]. Naval Electronic Engineering, 2021, 41(9): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC202109036.htm
|
[2] |
郝永平, 曹昭睿, 白帆, 等. 基于兴趣区域掩码卷积神经网络的红外-可见光图像融合与目标识别算法研究[J]. 光子学报, 2021, 50(2): 84-98. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102010.htm
HAO Yongping, CAO Zhaorui, BAI Fan, et al Research on infrared visible image fusion and target recognition algorithm based on region of interest mask convolution neural network[J]. Acta PHOTONICA Sinica, 2021, 50 (2): 84-98 https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102010.htm
|
[3] |
刘齐, 王茂军, 高强, 等. 基于红外成像技术的电气设备故障检测[J]. 电测与仪表, 2019, 56(10): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201910020.htm
LIU Qi, WANG Maojun, GAO Qiang, et al Electrical equipment fault detection based on infrared imaging technology[J]. Electric Measurement and Instrumentation, 2019, 56(10): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201910020.htm
|
[4] |
XIA J, LU Y, TAN L, et al. Intelligent fusion of infrared and visible image data based on convolutional sparse representation and improved pulse-coupled neural network[J]. Computers, Materials and Continua, 2021, 67(1): 613-624. DOI: 10.32604/cmc.2021.013457
|
[5] |
汪勇, 张英, 廖如超, 等. 基于可见光、热红外及激光雷达传感的无人机图像融合方法[J]. 激光杂志, 2020, 41(2): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202002029.htm
WANG Yong, ZHANG Ying, LIAO Ruchao, et al. UAV image fusion method based on visible light, thermal infrared and lidar sensing[J]. Laser Journal, 2020, 41(2): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202002029.htm
|
[6] |
ZHANG S, LI X, ZHANG X, et al. Infrared and visible image fusion based on saliency detection and two-scale transform decomposition[J]. Infrared Physics & Technology, 2021, 114(3): 103626.
|
[7] |
王传洋. 基于红外与可见光图像的电力设备识别的研究[D]. 北京: 华北电力大学, 2017.
WANG Chuanyang. Research on Power Equipment Recognition Based on Infrared and Visible Images[D]. Beijing: North China Electric Power University, 2017.
|
[8] |
LI H, WU X J. Infrared and visible image fusion using Latent low-rank representation[J]. Arxiv Preprint Arxiv, 2018: 1804.08992.
|
[9] |
HUI L, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.
|
[10] |
唐聪, 凌永顺, 杨华, 等. 基于深度学习的红外与可见光决策级融合跟踪[J]. 激光与光电子学进展, 2019, 56(7): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201907023.htm
TANG Cong, LING Yongshun, YANG Hua, et al. Decision-level fusion tracking of infrared and visible light based on deep learning[J]. Advances in Lasers and Optoelectronics, 2019, 56(7): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201907023.htm
|
[11] |
MA J, TANG L, XU M, et al. STDFusionNet: an infrared and visible image fusion network based on salient object detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.
|
[12] |
杨雪鹤, 刘欢喜, 肖建力. 多模态生物特征提取及相关性评价综述[J]. 中国图象图形学报, 2020, 25(8): 1529-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202008002.htm
YANG Xuehe, LIU Huanxi, XIAO Jianli. A review of multimodal biometric feature extraction and correlation evaluation[J]. Chinese Journal of Image and Graphics, 2020, 25(8): 1529-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202008002.htm
|
[13] |
WANG Z, XIN Z, HUANG X, et al. Overview of SAR image feature extraction and object recognition[J]. Springer, 2021, 234(4): 69-75.
|
[14] |
WEI Z. A summary of research and application of deep learning[J]. International Core Journal of Engineering, 2019, 5(9): 167-169.
|
[15] |
Bochkovskiy A, WANG C Y, LIAO H. YOLOv4: Optimal speed and accuracy of object detection[J]. Arxiv Preprint Arxiv, 2020: 2004.10934.
|
[16] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
|
[17] |
Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3 [C]//IEEE International Conference on Computer Vision (ICCV), 2020: 1314-1324.
|
[18] |
CHEN H, WANG Y, XU C, et al. AdderNet: Do we really need multiplications in deep learning?[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 1465-1474.
|
[19] |
宋鹏汉, 辛怀声, 刘楠楠. 基于深度学习的海上舰船目标多源特征融合识别[J]. 中国电子科学研究院学报, 2021, 16(2): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KJPL202102004.htm
SONG Penghan, XIN Huaisheng, LIU Nannan. Multi-source feature fusion recognition of marine ship targets based on deep learning[J]. Journal of the Chinese Academy of Electronic Sciences, 2021, 16(2): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KJPL202102004.htm
|
[20] |
Hassan E. Multiple object tracking using feature fusion in hierarchical LSTMs[J]. The Journal of Engineering, 2020(10): 893-899.
|
[21] |
LIN T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 936-944.
|
[22] |
LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. Arxiv Preprint Arxiv, 2019: 1911.09516v1.
|
[23] |
LI C, ZHAO N, LU Y, et al. Weighted sparse representation regularized graph learning for RGB-T object tracking[C]// Acm on Multimedia Conference, ACM, 2017: 1856-1864.
|
[24] |
XIAO X, WANG B, MIAO L, et al. Infrared and visible image object detection via focused feature enhancement and cascaded semantic extension[J]. Remote Sensing, 2021, 13(13): 2538. DOI: 10.3390/rs13132538
|
[1] | YE Ye. A Deep Learning Method for Hyperspectral Detection of Heavy Metal Contaminants in Soil Based on Attention Mechanism[J]. Infrared Technology , 2025, 47(4): 453-458. |
[2] | LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379. |
[3] | ZHANG Yi, FAN Yugang. Defect Detection of Eddy Current Thermal Imaging of Workpiece Based on Deep Learning and Domain Adaptation[J]. Infrared Technology , 2024, 46(3): 347-353. |
[4] | DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128. |
[5] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[6] | WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177. |
[7] | KUANG Chuwen, HE Wang. Object Detection Algorithm Based on Infrared and Visible Light Images[J]. Infrared Technology , 2022, 44(9): 912-919. |
[8] | WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178. |
[9] | WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271. |
[10] | SHEN Xu, CHENG Xiaohui, WANG Xinzheng. Infrared Dim-small Object Detection Algorithm Based on Adaptive Scale Local Contrast Enhancement Combined with Visual Attention Mechanism[J]. Infrared Technology , 2019, 41(8): 764-771. |