Citation: | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[1] |
史泽林, 冯斌, 冯萍. 基于波前编码的无热化红外成像技术综述(特邀)[J]. 红外与激光工程, 2022, 51(1): 32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202201003.htm
SHI Zelin, FENG Bin, FENG Ping. An overview of non thermal infrared imaging technology based on wavefront coding (invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202201003.htm
|
[2] |
CHEN C, LI H, WEI Y, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 52(1): 574-581.
|
[3] |
LIU R, LU Y, GONG C, et al. Infrared point target detection with improved template matching[J]. Infrared Physics & Technology, 2012, 55(4): 380-387.
|
[4] |
Teutsch M, Muller T, Huber M, et al. Low resolution person detection with a moving thermal infrared camera by hot spot classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, 2014: 209216.
|
[5] |
HAO Q, ZHANG L, WU X, et al. Multiscale object detection in infrared streetscape images based on deep learning and instance level data augmentation[J]. Applied Sciences, 2019, 9(3): 565. DOI: 10.3390/app9030565
|
[6] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
[7] |
GU Jiaojiao, LI Bingzhen, LIU Ke, et al Infrared ship target detection algorithm based on improved Faster R-CNN[J]. Infrared Technology, 2021, 43(2): 170-178. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG202307012.htm
|
[8] |
REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
|
[9] |
刘智嘉, 汪璇, 赵金博, 等. 基于YOLO算法的红外图像目标检测的改进方法[J]. 激光与红外, 2020, 50(12): 1512-1520. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012015.htm
LIU Zhijia, WANG Xuan, ZHAO Jinbo, et al. An improved method of infrared image target detection based on YOLO algorithm[J]. Laser and Infrared, 2020, 50(12): 1512-1520. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012015.htm
|
[10] |
Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
|
[11] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Pro-ceedings of the IEEE Conference On Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
[12] |
Bochkovskiy A, Wang C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. arXiv preprint arXiv: 2004.10934, 2020.
|
[13] |
LIN T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]//Computer Vision and Pattern Recognition(CVPR), 2017: 2117-2125.
|
[14] |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Computer Vision and Pattern Recognition(CVPR), 2018: 8759-8768.
|
[15] |
LUO Y, CAO X, ZHANG J, et al. CE-FPN: enhancing channel information for object detection[J/OL]. arXiv preprint arXiv: 2103. 10643, 2021.
|
[16] |
谢俊章, 彭辉, 唐健峰, 等. 改进YOLOv4的密集遥感目标检测[J]. 计算机工程与应用, 2021, 57(22): 247-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202122029.htm
XIE Junzhang, PENG Hui, TANG Jianfeng, et al. Improved dense remote sensing target detection of YOLOv4[J]. Computer Engineering and Application, 2021, 57(22): 247-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202122029.htm
|
[17] |
鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13): 132-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202013016.htm
JU Muran, LUO Jiangning, WANG Zhongbo, et al. Multi scale target detection algorithm integrating attention mechanism[J]. Journal of Optics, 2020, 40(13): 132-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202013016.htm
|
[18] |
TAN M, PANG R, LE Q V. Efficient det: Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
|
[19] |
LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
|
[20] |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
[21] |
Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-727.
|
1. |
吕鹏远,兰金江,曾学仁,牛霈,方亮,赵松璞. 基于特征增强与融合的红外目标检测算法. 红外技术. 2024(07): 782-790 .
![]() | |
2. |
陈永麟,王恒涛,张上. 基于YOLO v7的轻量级红外目标检测算法. 红外技术. 2024(12): 1380-1389 .
![]() | |
3. |
张玉彬,刘鹏谦,陈丽娜,韩雅鸽,刘蕊,谢静,徐长航. 基于YOLO v5的带涂层钢结构亚表面缺陷脉冲涡流热成像智能检测. 红外技术. 2023(10): 1029-1037 .
![]() | |
4. |
张睿,李允臣,王家宝,李阳,苗壮. 基于深度学习的红外目标检测综述. 计算机技术与发展. 2023(11): 1-8 .
![]() | |
5. |
郭柏璋,牟琦,冀汶莉. 融合注意力机制的YOLOv5深度神经网络杂草识别方法. 无线电工程. 2023(12): 2771-2782 .
![]() | |
6. |
范晓畅,梁煜,张为. 基于改进Shuffle-RetinaNet的红外车辆检测算法. 激光与光电子学进展. 2023(24): 118-127 .
![]() |