ZHANG Yubin, LIU Pengqian, CHEN Lina, HAN Yage, LIU Rui, XIE Jing, XU Changhang. YOLO v5-based Intelligent Detection for Eddy Current Pulse Thermography of Subsurface Defects in Coated Steel Structures[J]. Infrared Technology , 2023, 45(10): 1029-1037.
Citation: ZHANG Yubin, LIU Pengqian, CHEN Lina, HAN Yage, LIU Rui, XIE Jing, XU Changhang. YOLO v5-based Intelligent Detection for Eddy Current Pulse Thermography of Subsurface Defects in Coated Steel Structures[J]. Infrared Technology , 2023, 45(10): 1029-1037.

YOLO v5-based Intelligent Detection for Eddy Current Pulse Thermography of Subsurface Defects in Coated Steel Structures

More Information
  • Received Date: August 10, 2023
  • Revised Date: September 23, 2023
  • Subsurface defects in coated steel structures, such as corrosion, steel matrix cracks, and coating debonding, affect the overall structural performance and accelerate the degradation of coating systems. Therefore, this study proposes a YOLO v5-based intelligent detection method for pulsed eddy current thermography of subsurface defects in coated steel structures. This method can automatically detect subsurface defects in coated steel structures without removing the coating, which is of significant importance for engineering applications. The proposed method intelligently detects subsurface defects such as corrosion, cracks, and debonding in coated steel structures without removing the coating. The detection results show that the proposed method can accurately identify and classify four types of subsurface defects in coated steel structures: cracks in the steel matrix, debonding, severe quality loss (corrosion pits and corrosion abrasion), and slight quality loss (thin corrosion layers); the four defect types can be detected with accuracies of 96%, 97%, 95%, and 93%, respectively, while meeting real-time inspection requirements.
  • [1]
    葛玉龙, 王宁, 潘岩, 等. 环氧低表面带锈底漆在沿海炼化装置涂层修复中的应用[J]. 腐蚀科学与防护技术, 2016, 28(6): 558-602. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201606017.htm

    GE Y, WANG N, PAN Y, et al. Application of epoxy low surface rust primer in coating repair of coastal refining equipment[J]. Corrosion Science and Protection Technology, 2016, 28(6): 558-602. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201606017.htm
    [2]
    高燕, 任思明, 刘成宝, 等. 涂层/钢结构腐蚀与耐久性评价中的微区电化学实验研究[J]. 宁波工程学院学报, 2021, 33(1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-LBGS202101003.htm

    GAO Y, REN S, LIU C, et al. Experimental study of microzone electrochemistry in corrosion and durability evaluation of coatings/steel structures[J]. Journal of Ningbo University of Technology, 2021, 33(1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-LBGS202101003.htm
    [3]
    JIANG X, XU Y, HU H, et al. Nondestructive testing of corrosion thickness in coated steel structures with THz-TDS[J]. Measurement, 2023, 217: 113088. DOI: 10.1016/j.measurement.2023.113088
    [4]
    Permeh S, Lau K, Echeverria Boan M, et al. Electrochemical characteristics of antifouling coated steel structure submerged in Florida natural waters to mitigate micro- and macrofouling[J]. Construction and Building Materials, 2021, 274: 122087. DOI: 10.1016/j.conbuildmat.2020.122087
    [5]
    LIU S, GU Y, WANG S, et al. Degradation of organic pollutants by a Co3O4-graphite composite electrode in an electro-Fenton-like system[J]. Chinese Science Bulletin, 2013, 58(19): 2340-2346. DOI: 10.1007/s11434-013-5784-4
    [6]
    LIU S, ZHAO X R, SUN H Y, et al. The degradation of tetracycline in a photo-electro-Fenton system[J]. Chemical Engineering Journal, 2013, 231: 441-448. DOI: 10.1016/j.cej.2013.07.057
    [7]
    Hinder S J, Lowe C, Maxted J T, et al. Intercoat adhesion failure in a multilayer organic coating system: an X-ray photoelectron spectroscopy study[J]. Progress in Organic Coatings, 2005, 54(1): 20-27. DOI: 10.1016/j.porgcoat.2005.03.012
    [8]
    Nishida Y, Takahashi H, Iso M, et al. Surface modification of silica particles with polyimide by ultrasonic wave irradiation[J]. Advanced Powder Technology, 2005, 16(6): 639-648. DOI: 10.1163/156855205774483316
    [9]
    WANG H, QIAN M, LIU W. Laser ultrasonic characterization of adhesive bonds between epoxy coating and aluminum substrate[J]. Ultrasonics, 2006, 44: e1349-e1353. DOI: 10.1016/j.ultras.2006.05.050
    [10]
    刘栓, 赵海超, 顾林, 等. 有机涂层/金属腐蚀无损检测技术研究进展[J]. 电镀与涂饰, 2014, 33(22): 993-997. DOI: 10.3969/j.issn.1004-227X.2014.22.010

    LIU S, ZHAO H, GU L, et al. Research advances of nondestructive measurement technology for organic coating/metal corrosion system [J]. Electroplating & Finishing, 2014, 33(22): 993-997. DOI: 10.3969/j.issn.1004-227X.2014.22.010
    [11]
    HE Y, TIAN G Y, PAN M, et al. An investigation into eddy current pulsed thermography for detection of corrosion blister[J]. Corrosion Science, 2014, 78: 1-6. DOI: 10.1016/j.corsci.2013.09.001
    [12]
    Hernandez J, Fouliard Q, Vo K, et al. Detection of corrosion under insulation on aerospace structures via pulsed eddy current thermography[J]. Aerospace Science and Technology, 2022, 121: 107317. DOI: 10.1016/j.ast.2021.107317
    [13]
    SHI Z, XU X, MA J, et al. Quantitative detection of cracks in steel using eddy current pulsed thermography[J]. Sensors, 2018, 18(4): 1070. DOI: 10.3390/s18041070
    [14]
    牟蕾. 基于多维EMD的红外弱小目标检测方法研究[D]. 西安: 西安电子科技大学, 2019.

    MU L. Research on Infrared Dim Small Target Detection Method Based on Multidimensional EMD[D]. Xi'an: Xidian University, 2019.
    [15]
    窦田玫. 基于低秩稀疏恢复理论的红外小目标检测算法研究[D]. 西安: 陕西师范大学, 2020.

    DOU T. Research on Infrared Small Target Detection Algorithm Based on Low Rank Sparse Recovery Theory[D]. Xi'an: Shaanxi Normal University, 2020.
    [16]
    李向荣, 孙立辉. 融合注意力机制的多尺度红外目标检测[J]. 红外技术, 2023, 45(7): 746-754. http://hwjs.nvir.cn/article/id/2e1d129d-a77a-4dba-8de5-135fb8b75ee7

    LI X, SUN L. Multiscale infrared target detection based on attention mechanism[J]. Infrared Technology, 2023, 45(7): 746-754. http://hwjs.nvir.cn/article/id/2e1d129d-a77a-4dba-8de5-135fb8b75ee7
    [17]
    何赟泽, 李响, 王洪金, 等. 基于可见光和热成像的风机叶片全周期无损检测综述[J]. 机械工程学报, 2023, 59(6): 32-45.

    HE Y, LI X, WANG H, et al. A review: full-cycle nondestructive testing based on visible light and thermography of wind turbine blade[J]. Journal of Mechanical Engineering, 2023, 59(6): 32-45.
    [18]
    Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
    [19]
    代牮, 赵旭, 李连鹏, 等. 基于改进YOLO v5的复杂背景红外弱小目标检测算法[J]. 红外技术, 2022, 44(5): 504-512. http://hwjs.nvir.cn/article/id/f71aa5f4-92b0-4570-9056-c2abd5506021

    DAI J, ZHAO X, LI L, et al. Improved YOLO v5-based infrared dim-small target detection under complex background[J]. Infrared Technology, 2022, 44(5): 504-512. http://hwjs.nvir.cn/article/id/f71aa5f4-92b0-4570-9056-c2abd5506021
    [20]
    王洪金, 杜旭, 赵丽劼, 等. 人在回路的风机叶片红外缺陷检测与测量[J/OL][2023-02-08]. 中国测试, https://kns.cnki.net/kcms/detail//51.1714.TB.20230207.1448.012.html.

    WANG H, DU X, ZHAO L, et al. Human-in-the-loop infrared defect detection and measurement of wind turbine blades[J/OL] [2023-02-08]. China Measurement & Test, https://kns.cnki.net/kcms/detail//51.1714.TB.20230207.1448.012.html.
  • Cited by

    Periodical cited type(5)

    1. 刘晏长. 装配式钢结构建筑抗侧力支架缺陷超像素级Gabor识别方法. 无损检测. 2025(04): 33-38 .
    2. 杨超,孙虎,唐超. 电磁脉冲涡流检测下金属管道缺陷检测研究. 电子测量与仪器学报. 2025(04): 132-140 .
    3. 胡光锋. 基于红外热成像技术的动车组关键部位表面伤痕检测方法. 现代制造技术与装备. 2024(02): 92-94 .
    4. 张玉彬,陈丽娜,刘鹏谦,赵擎,刘蕊,王龙博,谢静,徐长航. CFRP-钢胶接结构内部损伤的增强型电磁感应热成像检测. 复合材料学报. 2024(09): 5004-5015 .
    5. 周鹍,郭俊鑫,罗杰,李云红,李丽敏,苏雪平,侯乐乐. 基于红外测温数据的水电站设备缺陷检测方法. 红外技术. 2024(11): 1308-1314 . 本站查看

    Other cited types(5)

Catalog

    Article views (169) PDF downloads (44) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return