CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
Citation: CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.

Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks

More Information
  • Received Date: August 22, 2022
  • Revised Date: September 13, 2022
  • In this study, an infrared and visible image fusion using double attention generative adversarial networks(DAGAN) is proposed to address the issue of most infrared and visible light image fusion methods based on GaN using only the attention mechanism in the generator and lacking the attention perception ability in the identification stage. Using DAGAN, a multi-scale attention module that combines spatial and channel attentions in different scale spaces and applies it in the image generation and discrimination stages such that both the generator and discriminator can identify the most discriminative region in the image, was proposed. Simultaneously, an attention loss function that uses the attention map in the discrimination stage to calculate the attention loss and save more target and background information was proposed. The TNO test of a public dataset shows that, compared with the other seven fusion methods, DAGAN has the best visual effect and the highest fusion efficiency.
  • [1]
    董安勇, 杜庆治, 苏斌, 等. 基于卷积神经网络的红外与可见光图像融合[J]. 红外技术, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009

    DONG Anyong, DU Qingzhi, SU Bin, et al. Infrared and visible image fusion based on convolutional neural network[J]. Infrared Technology, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009
    [2]
    罗迪, 王从庆, 周勇军. 一种基于生成对抗网络与注意力机制的可见光和红外图像融合方法[J]. 红外技术, 2021, 43(6): 566-574. http://hwjs.nvir.cn/article/id/3403109e-d8d7-45ed-904f-eb4bc246275a

    LUO Di, WANG Congqing, ZHOU Yongjun. A visible and infrared image fusion method based on generative adversarial networks and attention mechanism[J]. Infrared Technology, 2021, 43(6): 566-574. http://hwjs.nvir.cn/article/id/3403109e-d8d7-45ed-904f-eb4bc246275a
    [3]
    CHEN R, XIE Y, LUO X, et al. Joint-attention discriminator for accurate super-resolution via adversarial training[C]//Proceedings of the 27th ACM International Conference on Multimedia, 2019: 711-719.
    [4]
    LIU N, HAN J, YANG M-H. Picanet: pixel-wise contextual attention learning for accurate saliency detection[J]. IEEE Transactions on Image Processing, 2020, 29: 6438-6451. DOI: 10.1109/TIP.2020.2988568
    [5]
    CHEN J, WAN L, ZHU J, et al. Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(4): 681-685.
    [6]
    ZHOU B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2921-2929.
    [7]
    Zagoruyko S, Komodakis N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[J/OL]. arXiv preprint arXiv: 161203928, 2016, 1: (https://doi.org/10.48550/arXiv.1612.03928).
    [8]
    Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5769-5779.
    [9]
    Alexander Toet. The tno multiband image data collection[J]. Journal Data in Brief, 2017, 15: 249-251. DOI: 10.1016/j.dib.2017.09.038
    [10]
    MA J, YU W, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. DOI: 10.1016/j.inffus.2018.09.004
    [11]
    Burt P, Adelson E. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532-540. DOI: 10.1109/TCOM.1983.1095851
    [12]
    Toet A. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253. DOI: 10.1016/0167-8655(89)90003-2
    [13]
    Lewis J J, O'Callaghan R J, Nikolov S G, et al. Pixel-and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119-130. DOI: 10.1016/j.inffus.2005.09.006
    [14]
    Chipman L J, Orr T M, Graham L N. Wavelets and Image Fusion[C]// International Conference on Image Processing of IEEE, 1995: 248-251.
    [15]
    Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156. DOI: 10.1016/j.inffus.2006.02.001
    [16]
    Adu J, GAN J, WANG Y, et al. Image fusion based on nonsubsampled contourlet transform for infrared and visible light image[J]. Infrared Physics & Technology, 2013, 61: 94-100.
    [17]
    Roberts J W, Van Aardt J A, Ahmed F B. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2008, 2(1): 023522. DOI: 10.1117/1.2945910
    [18]
    SHI W, ZHU C, TIAN Y, et al. Wavelet-based image fusion and quality assessment[J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 6(3-4): 241-251. DOI: 10.1016/j.jag.2004.10.010
    [19]
    QU G, ZHANG D, YAN P. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313-315.
    [20]
    HE L I, LEI L, CHAO Y, et al. An improved fusion algorithm for infrared and visible images based on multi-scale transform[J]. Semiconductor Optoelectronics, 2016, 74: 28-37.
    [21]
    MA J, YU W, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26.
  • Related Articles

    [1]GE Peng, YANG Bo, HONG Wenqing, WANG Xiaodong, LIU Chuanming, SU Lan, SU Junbo. Dynamic Range Compression and Detail Enhancement Algorithm Combined with PE for High Dynamic Range Infrared Images[J]. Infrared Technology , 2020, 42(3): 279-285.
    [2]Research on Stable Tracking Platforms: Disturbance Rejection Method Based on H∞ Robust Control[J]. Infrared Technology , 2017, 39(9): 859-863.
    [3]MEI Jiacheng, WANG Rui, YE Hanmin. Compressive Fusion and Target Detection Based on Sparse Representation[J]. Infrared Technology , 2016, 38(3): 218-224.
    [4]YANG Xue, CHEN Fansheng. Lossless Compression of Infrared Image Based on Prediction and JPEG2000[J]. Infrared Technology , 2016, 38(2): 144-148,156.
    [5]Simulation of Infrared Image Based on Electric Heating Film[J]. Infrared Technology , 2013, (10): 650-653.
    [6]Image Compression Algorithm Based on Wavelet Transform and Visual Sensitivity Characteristics[J]. Infrared Technology , 2013, (3): 155-160.
    [7]LAN Chun-jia, TANG Xin-yi, WANG Shi-yong, LI Shao-xiu. High-speed Infrared Image Acquisition System Based on PCI Express[J]. Infrared Technology , 2011, 33(1): 37-40. DOI: 10.3969/j.issn.1001-8891.2011.01.009
    [8]PANG Zhen-peng, LI Wei, ZHOU Kai. A Layered Algorithm Image Coding Based on Combination of Wavelet and Ridgelet[J]. Infrared Technology , 2009, 31(10): 581-584. DOI: 10.3969/j.issn.1001-8891.2009.10.006
    [9]ZHANG Su-wen, WANG Li-li, MIAO Dan-dan. An Improved Embedded Zerotree Wavelets Image Coding Algorithm[J]. Infrared Technology , 2008, 30(9): 541-545. DOI: 10.3969/j.issn.1001-8891.2008.09.012
    [10]ZHAO Xiu-ying, ZHAI Lin-pei, WEI Jing-yuan, LIU Hong. Integer Biorthogonal Wavelet Transform on Image Compression[J]. Infrared Technology , 2005, 27(6): 458-462. DOI: 10.3969/j.issn.1001-8891.2005.06.006
  • Cited by

    Periodical cited type(8)

    1. 张宇,张健,齐林. 基于遗传算法优化Canny算子的织绣文物纹样抽取方法研究. 丝绸. 2024(06): 1-12 .
    2. 严丹昭,陈晶,兰旺耀,廖一鹏. 基于表层温度深度学习的电缆接头绝缘劣化非接触式诊断. 红外技术. 2024(06): 712-721 . 本站查看
    3. 王鑫刚,田军委,于亚琳,王沁,张杰. 改进Canny算法的红外人脸图像边缘轮廓提取. 应用光学. 2023(01): 61-70 .
    4. 肖建英,邓强. 三维光学模型的激光图像边缘检测研究. 激光杂志. 2023(08): 110-114 .
    5. 涂伟沪,蔡玲霞,李学军. 基于改进蝗虫算法优化Canny算子的鸡蛋裂纹图像检测. 食品与机械. 2022(02): 167-172+202 .
    6. 高海韬,李丹宁,王彬,唐鑫鑫. 运动模糊图像PSF参数估计方法改进及图像复原. 计算机工程. 2022(09): 197-203+212 .
    7. 赵一鸣,胡燕海. 用于小型注塑件边缘提取的改进坎尼算法. 机械制造. 2022(07): 1-5+11 .
    8. 杨林超,张新锋,刘康. 管道机器人采集图像缺陷检测方法研究. 工业仪表与自动化装置. 2021(06): 48-51+64 .

    Other cited types(5)

Catalog

    Article views (249) PDF downloads (66) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return