Citation: | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[1] |
董安勇, 杜庆治, 苏斌, 等. 基于卷积神经网络的红外与可见光图像融合[J]. 红外技术, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009
DONG Anyong, DU Qingzhi, SU Bin, et al. Infrared and visible image fusion based on convolutional neural network[J]. Infrared Technology, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009
|
[2] |
罗迪, 王从庆, 周勇军. 一种基于生成对抗网络与注意力机制的可见光和红外图像融合方法[J]. 红外技术, 2021, 43(6): 566-574. http://hwjs.nvir.cn/article/id/3403109e-d8d7-45ed-904f-eb4bc246275a
LUO Di, WANG Congqing, ZHOU Yongjun. A visible and infrared image fusion method based on generative adversarial networks and attention mechanism[J]. Infrared Technology, 2021, 43(6): 566-574. http://hwjs.nvir.cn/article/id/3403109e-d8d7-45ed-904f-eb4bc246275a
|
[3] |
CHEN R, XIE Y, LUO X, et al. Joint-attention discriminator for accurate super-resolution via adversarial training[C]//Proceedings of the 27th ACM International Conference on Multimedia, 2019: 711-719.
|
[4] |
LIU N, HAN J, YANG M-H. Picanet: pixel-wise contextual attention learning for accurate saliency detection[J]. IEEE Transactions on Image Processing, 2020, 29: 6438-6451. DOI: 10.1109/TIP.2020.2988568
|
[5] |
CHEN J, WAN L, ZHU J, et al. Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(4): 681-685.
|
[6] |
ZHOU B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2921-2929.
|
[7] |
Zagoruyko S, Komodakis N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[J/OL]. arXiv preprint arXiv: 161203928, 2016, 1: (https://doi.org/10.48550/arXiv.1612.03928).
|
[8] |
Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5769-5779.
|
[9] |
Alexander Toet. The tno multiband image data collection[J]. Journal Data in Brief, 2017, 15: 249-251. DOI: 10.1016/j.dib.2017.09.038
|
[10] |
MA J, YU W, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. DOI: 10.1016/j.inffus.2018.09.004
|
[11] |
Burt P, Adelson E. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532-540. DOI: 10.1109/TCOM.1983.1095851
|
[12] |
Toet A. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253. DOI: 10.1016/0167-8655(89)90003-2
|
[13] |
Lewis J J, O'Callaghan R J, Nikolov S G, et al. Pixel-and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119-130. DOI: 10.1016/j.inffus.2005.09.006
|
[14] |
Chipman L J, Orr T M, Graham L N. Wavelets and Image Fusion[C]// International Conference on Image Processing of IEEE, 1995: 248-251.
|
[15] |
Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156. DOI: 10.1016/j.inffus.2006.02.001
|
[16] |
Adu J, GAN J, WANG Y, et al. Image fusion based on nonsubsampled contourlet transform for infrared and visible light image[J]. Infrared Physics & Technology, 2013, 61: 94-100.
|
[17] |
Roberts J W, Van Aardt J A, Ahmed F B. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2008, 2(1): 023522. DOI: 10.1117/1.2945910
|
[18] |
SHI W, ZHU C, TIAN Y, et al. Wavelet-based image fusion and quality assessment[J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 6(3-4): 241-251. DOI: 10.1016/j.jag.2004.10.010
|
[19] |
QU G, ZHANG D, YAN P. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313-315.
|
[20] |
HE L I, LEI L, CHAO Y, et al. An improved fusion algorithm for infrared and visible images based on multi-scale transform[J]. Semiconductor Optoelectronics, 2016, 74: 28-37.
|
[21] |
MA J, YU W, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26.
|
1. |
张宇,张健,齐林. 基于遗传算法优化Canny算子的织绣文物纹样抽取方法研究. 丝绸. 2024(06): 1-12 .
![]() | |
2. |
严丹昭,陈晶,兰旺耀,廖一鹏. 基于表层温度深度学习的电缆接头绝缘劣化非接触式诊断. 红外技术. 2024(06): 712-721 .
![]() | |
3. |
王鑫刚,田军委,于亚琳,王沁,张杰. 改进Canny算法的红外人脸图像边缘轮廓提取. 应用光学. 2023(01): 61-70 .
![]() | |
4. |
肖建英,邓强. 三维光学模型的激光图像边缘检测研究. 激光杂志. 2023(08): 110-114 .
![]() | |
5. |
涂伟沪,蔡玲霞,李学军. 基于改进蝗虫算法优化Canny算子的鸡蛋裂纹图像检测. 食品与机械. 2022(02): 167-172+202 .
![]() | |
6. |
高海韬,李丹宁,王彬,唐鑫鑫. 运动模糊图像PSF参数估计方法改进及图像复原. 计算机工程. 2022(09): 197-203+212 .
![]() | |
7. |
赵一鸣,胡燕海. 用于小型注塑件边缘提取的改进坎尼算法. 机械制造. 2022(07): 1-5+11 .
![]() | |
8. |
杨林超,张新锋,刘康. 管道机器人采集图像缺陷检测方法研究. 工业仪表与自动化装置. 2021(06): 48-51+64 .
![]() |