Citation: | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
In infrared and visible image fusion, fused images often suffer from insufficient prominence of significant targets, inadequate expression of visible light information, edge blurring, and local information imbalance under uneven lighting conditions. To address these issues, an image fusion algorithm that combines attention mechanisms and equilibrium loss, termed the depthwise separable, squeeze-and-excitation, and equilibrium loss-based convolutional neural network (DSEL-CNN), is proposed. First, a depth-wise separable convolution is used to extract the image features. Subsequently, a fusion strategy is used to apply the squeeze-and-excitation attention mechanism to enhance the weight of effective information. Finally, an equilibrium composite loss function is utilized to calculate the loss of the fused image to ensure balanced information. A comparison of the fusion generative adversarial network (FusionGAN), DenseFuse, and four other fusion algorithms on the TNO and multi-spectral road scenarios (MSRS) public datasets showed that the proposed method achieved the highest improvements in mutual information (MI), visual information fidelity (VIF), and edge retention index (Qabf) by 1.033, 0.083, and 0.069, respectively. Experimental results demonstrate that the proposed algorithm outperforms six commonly used fusion methods in terms of visual perception, information content, and edge and texture preservation in fused images.
[1] |
张健, 黄安穴. 基于改进LatLRR算法的红外与可见光图像融合研究[J]. 红外技术, 2024, 46(6): 672-680. http://hwjs.nvir.cn/article/id/7363bd38-a7f7-4e58-af46-b1038bb9cc30
ZHANG Jian, HUANG Anxue. Infrared and visible image fusion based on improved LatLRR algorithm[J]. Infrared Technology, 2024, 46(6): 672-680. http://hwjs.nvir.cn/article/id/7363bd38-a7f7-4e58-af46-b1038bb9cc30
|
[2] |
刘爽利, 黄雪莉, 刘磊, 等. 光电载荷下的红外和可见光图像融合综述[J]. 计算机工程与应用, 2024, 60(1): 28-39.
LIU Shuangli, HUANG Xueli, LIU Lei, et al. Infrared and visible image fusion under photoelectric loads[J]. Computer Engineering and Applications, 2024, 60(1): 28-39.
|
[3] |
刘刚, 肖刚. 基于双路级联对抗机制的红外与可见光图像融合方法[J]. 光子学报, 2021, 50(9): 321-331.
LIU Gang, XIAO Gang. Infrared and visible image fusion method based on dual-path cascade adversarial mechanism[J]. Acta Photonica Sinica, 2021, 50(9): 321-331.
|
[4] |
沈英, 黄春红, 黄峰, 等. 红外与可见光图像融合技术的研究进展[J]. 红外与激光工程, 2021, 50(9): 20200467.
SHEN Ying, HUANG Chunhong, HUANG Feng, et al. Research progress of infrared and visible image fusion technology[J]. Infrared and Laser Engineering, 2021, 50(9): 20200467.
|
[5] |
叶坤涛, 李文, 舒蕾蕾, 等. 结合改进显著性检测与NSST的红外与可见光图像融合方法[J]. 红外技术, 2021, 43(12): 1212-1221. http://hwjs.nvir.cn/article/id/bfd9f932-e0bd-4669-b698-b02d42e31805
YE Kuntao, LI Wen, SHU Leilei, et al. Infrared and visible image fusion method based on improved saliency detection and non-subsampled shearlet transform[J]. Infrared Technology, 2021, 43(12): 1212-1221. http://hwjs.nvir.cn/article/id/bfd9f932-e0bd-4669-b698-b02d42e31805
|
[6] |
杨帆, 王志社, 孙婧, 等. 红外与可见光图像交互自注意力融合方法[J]. 光子学报, 2024, 53(6): 0610003.
YANG Fan, WANG Zhishe, SUN Jing, et al. Infrared and visible image fusion method via interactive self-attention[J]. Acta Photonica Sinica, 2024, 53(6): 0610003.
|
[7] |
王天元, 罗晓清, 张战成. 自注意力引导的红外与可见光图像融合算法[J]. 红外技术, 2023, 45(2): 171-177. http://hwjs.nvir.cn/article/id/09b45ee5-6ebc-4222-a4ec-11b5142482fe
WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and visible image fusion based on self-attention learning[J]. Infrared Technology, 2023, 45(2): 171-177. http://hwjs.nvir.cn/article/id/09b45ee5-6ebc-4222-a4ec-11b5142482fe
|
[8] |
闵莉, 曹思健, 赵怀慈, 等. 改进生成对抗网络实现红外与可见光图像融合[J]. 红外与激光工程, 2022, 51(4): 20210291.
MIN Li, CAO Sijian, ZHAO Huaici, et al. Infrared and visible image fusion using improved generative adversarial networks[J]. Infrared and Laser Engineering, 2022, 51(4): 20210291.
|
[9] |
MA J, YU W, LIANG P, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. DOI: 10.1016/j.inffus.2018.09.004
|
[10] |
SHEN J, CHEN Y, LIU Y, et al. ICAFusion: Iterative cross-attention guided feature fusion for multispectral object detection[J]. Pattern Recognition, 2024, 145: 109913. DOI: 10.1016/j.patcog.2023.109913
|
[11] |
MA J, XU H, JIANG J, et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980-4995. DOI: 10.1109/TIP.2020.2977573
|
[12] |
ZHANG Y, LIU Y, SUN P, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118. DOI: 10.1016/j.inffus.2019.07.011
|
[13] |
JIAN L, YANG X, LIU Z, et al. SEDRFuse: A symmetric encoder–decoder with residual block network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-15.
|
[14] |
Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
|
[15] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
[16] |
Toet A. The TNO multiband image data collection[J]. Data in Brief, 2017, 15: 249-251. DOI: 10.1016/j.dib.2017.09.038
|
[17] |
MA J, TANG L, FAN F, et al. SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1200-1217. DOI: 10.1109/JAS.2022.105686
|
[18] |
LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.
|
[19] |
TANG L, YUAN J, ZHANG H, et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83: 79-92.
|
[20] |
LIU J, FAN X, HUANG Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5802-581.
|
[1] | YE Ye. A Deep Learning Method for Hyperspectral Detection of Heavy Metal Contaminants in Soil Based on Attention Mechanism[J]. Infrared Technology , 2025, 47(4): 453-458. |
[2] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[3] | LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379. |
[4] | WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014. |
[5] | ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451. |
[6] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[7] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[8] | WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177. |
[9] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |
[10] | WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271. |