DAI Jian, ZHAO Xu, LI Lianpeng, LIU Wen, CHU Xinyue. Improved YOLOv5-based Infrared Dim-small Target Detection under Complex Background[J]. Infrared Technology , 2022, 44(5): 504-512.
Citation: DAI Jian, ZHAO Xu, LI Lianpeng, LIU Wen, CHU Xinyue. Improved YOLOv5-based Infrared Dim-small Target Detection under Complex Background[J]. Infrared Technology , 2022, 44(5): 504-512.

Improved YOLOv5-based Infrared Dim-small Target Detection under Complex Background

More Information
  • Received Date: September 17, 2021
  • Revised Date: October 20, 2021
  • Using the traditional algorithm to meet the detection requirements of interference factors, such as complex background and noise, relying on the precise separation and information extraction of infrared targets and environmental background, is difficult. This paper presents a dim–small target detection method for an infrared imaging algorithm based on the improved YOLOv5 for complex backgrounds. Based on YOLOv5, an attention mechanism is introduced in the algorithm to improve the feature extraction ability and detection efficiency. In addition, the loss function and prediction box screening method of the original YOLOv5 target detection network are used to improve the accuracy of the algorithm for infrared dim–small target detection. In the experiment, seven sets of infrared dim–small target image datasets with different complex backgrounds are selected, the data are labeled and trained, and an infrared dim–small target detection model is established. Finally, the accuracy of the algorithm and model is evaluated in terms of the model training and target detection results. The experimental results show that the model trained by employing the improved YOLOv5 algorithm in this study has a significant improvement in detection accuracy and speed compared with several target detection algorithms used in the experiment, and the average accuracy can reach more than 99.6%. The model can effectively detect infrared dim–small targets in different complex backgrounds, and the leakage and false alarm rates are low.
  • [1]
    GAO Jinyan, GUO Yulan, LIN Zaiping, et al. Robust infrared small target detection using multiscale gray and variance difference measures[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 5039-5052. DOI: 10.1109/JSTARS.2018.2877501
    [2]
    XU Yongli, WANG Weihua. A method for single frame detection of infrared dim small target in complex background[J]. Journal of Physics. Conference Series, 2020, 1634(1): 012063. DOI: 10.1088/1742-6596/1634/1/012063
    [3]
    马铭阳, 王德江, 孙翯, 等. 基于稳健主成分分析和多点恒虚警的红外弱小目标检测[J]. 光学学报, 2019, 39(8): 0810001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908013.htm

    MA Mingyang, WANG Dejiang, SUN He, et al. Infrared dim-small target detection based on robust principal component analysis and multi-point constant false alarm[J]. Acta Photonica Sinica, 2019, 39(8): 0810001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908013.htm
    [4]
    杨其利, 周炳红, 郑伟, 等. 基于全卷积网络的红外弱小目标检测算法[J]. 红外技术, 2021, 43(4): 349-356. http://hwjs.nvir.cn/article/id/3abe1943-0aea-49e7-b39f-cfad3d9c8ac4

    YANG Qili, ZHOU Binghong, ZHENG Wei, et al. Infrared weak target detection algorithm based on full convolutional network[J]. Infrared Technology, 2021, 43(4): 349-356. http://hwjs.nvir.cn/article/id/3abe1943-0aea-49e7-b39f-cfad3d9c8ac4
    [5]
    仇国庆, 杨海静, 王艳涛, 等. 基于视觉特征融合的机载红外弱小目标检测[J]. 激光与光电子学进展, 2020, 57(18): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202018007.htm

    QIU Guoqing, YANG Haijing, WANG Yantao, et al. Dim target detection in airborne infrared images based on visual feature fusion[J]. Laser & Optoelectronics Progress, 2020, 57(18): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202018007.htm
    [6]
    陆福星, 李夜金, 陈忻, 等. 基于Top-hat变换的PM模型弱小目标检测[J]. 系统工程与电子技术, 2018, 40(7): 1417-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201807001.htm

    LU Fuxing, LI Yegin, CHEN Xin, et al. Weak target detection for PM model based on Top-hat transform[J]. Systems Engineering and Electronics, 2018, 40(7): 1417-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201807001.htm
    [7]
    汪烈兵, 姜雄飞, 石春光, 等. 基于图像滤波与Hough变换的红外弱小目标检测[J]. 红外技术, 2020, 42(7): 683-687. http://hwjs.nvir.cn/article/id/hwjs202007012

    WANG Liebing, JIANG Xiongfei, SHI Chunguang, et al. Infrared small target detection based on image filtering and Hough transform[J]. Infrared Technology, 2020, 42(7): 683-687. http://hwjs.nvir.cn/article/id/hwjs202007012
    [8]
    韩金辉, 董兴浩, 蒋亚伟, 等. 基于局部对比度机制的红外弱小目标检测算法[J]. 红外技术, 2021, 43(4): 357-366. http://hwjs.nvir.cn/article/id/29b77b73-8c1e-4251-9ae4-c9f39e265270

    HAN Jinhui, DONG Xinjhao, JIANG Yawei, et al. Infrared small dim target detection based on local contrast mechanism[J]. Infrared Technology, 2021, 43(4): 357-366. http://hwjs.nvir.cn/article/id/29b77b73-8c1e-4251-9ae4-c9f39e265270
    [9]
    Kaveh Ahmadi, Ezzatollah Salari. Small dim object tracking using frequency and spatial domain information[J]. Pattern Recognition, 2016, 58: 227-234. DOI: 10.1016/j.patcog.2016.04.001
    [10]
    冯洋. 基于小波包变换的红外弱小目标检测[J]. 计算机与现代化, 2020(12): 112-115, 122. DOI: 10.3969/j.issn.1006-2475.2020.12.019

    FENG Yang. Infrared dim small target detection based on wavelet packet transform[J]. Computers and Modernization, 2020(12): 112-115, 122. DOI: 10.3969/j.issn.1006-2475.2020.12.019
    [11]
    李德新, 钟洪. 基于差异梯度直方图与显著性映射的红外弱小目标检测算法[J]. 光学技术, 2021, 47(5): 594-600. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS202105015.htm

    LI Dexin, ZHONG Hong. Infrared dim small target detection algorithm based on difference histogram of oriented gradients and saliency map[J]. Optical Technique, 2021, 47(5): 594-600. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS202105015.htm
    [12]
    ZHANG N, Donahue J, Girshick R, et al. Part-based R-CNNs for fine-grained category detection[C]//European Conference on Computer Vision, 2014: 834-849.
    [13]
    Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
    [14]
    REN S, HE K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
    [15]
    Redmon J, Divvala S, Girshick R, et al. You Only Look Once: real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
    [16]
    LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
    [17]
    杨晓玲, 江伟欣, 袁浩然. 基于Yolov5的交通标志识别检测[J]. 信息技术与信息化, 2021(4): 28-30. DOI: 10.3969/j.issn.1672-9528.2021.04.005

    YANG Xiaoling, JIANG Weixin, YUAN Haoran. Traffic sign recognition detection based on Yolov5[J]. Information Technology and Informatization, 2021(4): 28-30. DOI: 10.3969/j.issn.1672-9528.2021.04.005
    [18]
    Lowe D G. Distinctive image features from scale invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94
    [19]
    范有臣, 马旭, 马淑丽, 等. 深度学习在激光干扰效果评估中的应用[J/OL]. 红外与激光工程, [2021-08-03]: 1-8.

    FAN Youchen, MA Xu, MA Shuli et al. Evaluation method of laser jamming learning effect based on deep learning[J/OL]. Infrared and Laser Engineering, [2021-08-03]: 1-8.
    [20]
    林清平, 张麒麟, 肖蕾. 采用改进YOLOv5网络的遥感图像目标识别方法[J]. 空军预警学院学报, 2021, 35(2): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KLDX202102008.htm

    LIN Qingping, ZHANG Qilin, XIAO Lei. A remote sensing image target recognition method using improved YOLOv5 network[J]. Journal of Air Force Early Warning Academy, 2021, 35(2): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KLDX202102008.htm
    [21]
    王宇宁, 庞智恒, 袁德明. 基于YOLO算法的车辆实时检测[J]. 武汉理工大学学报, 2016, 38(10): 41-46. DOI: 10.3963/j.issn.1671-4431.2016.10.008

    WANG Yuning, PANG Zhiheng, YUAN Deming. Vehicle detection based on YOLO in real time[J]. Journal of Wuhan University of Technology, 2016, 38(10): 41-46. DOI: 10.3963/j.issn.1671-4431.2016.10.008
    [22]
    周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm

    ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm
    [23]
    ZHOU Junchi et al. Ship target detection algorithm based on improved YOLOv5[J]. Journal of Marine Science and Engineering, 2021, 9(8): 908-908. DOI: 10.3390/jmse9080908
    [24]
    张宏群, 班勇苗, 郭玲玲, 等. 基于YOLOv5的遥感图像舰船的检测方法[J]. 电子测量技术, 2021, 44(8): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL202108017.htm

    ZHANG Hongqun, BAN Yongmiao, GUO Lingling, et al. Detection method of remote sensing image ship based on YOLOv5[J]. Electronic Measurement Technology, 2021, 44(8): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL202108017.htm
  • Related Articles

    [1]ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366.
    [2]CHEN Zhuang, HE Feng, HONG Xiaohang, ZHANG Qiran, YANG Yuyan. Embedded Platform IR Small-target Detection Based on Self-attention and Convolution Fused Architecture[J]. Infrared Technology , 2025, 47(1): 89-96.
    [3]LI Xu, XIAO Zhiyun, JIANG Yedong, WANG Yazhou, SU Yu. Fault Detection and Identification of Multi-Source Insulators Based on Improved YOLOv7[J]. Infrared Technology , 2024, 46(11): 1325-1333.
    [4]YUE Mingkai, QUAN Kangnan, ZHANG Cong, HAN Ziqiang. Research on Infrared Small Target Detection Algorithm Based on Improved YOLOv8[J]. Infrared Technology , 2024, 46(11): 1286-1292.
    [5]GAO Yongqi, YUAN Zhixiang. Improved YOLOv5-based Underwater Infrared Garbage Detection Algorithm[J]. Infrared Technology , 2024, 46(9): 994-1005.
    [6]WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801.
    [7]GAO Mingming, LI Yuanzhou, MA Lei, NAN Jingchang, ZHOU Qianyi. YOLOv5-LR: A Rotating Object Detection Model for Remote Sensing Images[J]. Infrared Technology , 2024, 46(1): 43-51.
    [8]SHEN Lingyun, LANG Baihe, SONG Zhengxun, WEN Zhitao. Remote Sensing Image Target Detection Method Based on CSE-YOLOv5[J]. Infrared Technology , 2023, 45(11): 1187-1197.
    [9]KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981.
    [10]HU Yan, HU Haobing, ZHAO Yuhang, YUAN Zihao, SI Chengke. Infrared Thermal Imaging Low-Resolution and Small Pedestrian Target Detection Method[J]. Infrared Technology , 2022, 44(11): 1146-1153.
  • Cited by

    Periodical cited type(25)

    1. 李阳,丘建培,宋坤. 基于音视频多模态数据感知的智能巡检系统设计与应用. 现代信息科技. 2025(03): 189-193 .
    2. 周亚男. 光伏电站运维现状分析. 太阳能. 2024(01): 12-19 .
    3. 兰金江,曾学仁,方亮,田楠,王志强,刘继江. 基于无人机巡检的光伏缺陷检测与定位. 科技创新与应用. 2024(18): 14-19 .
    4. 任鹏,张哲,于洋. 基于边缘计算的县域分布式光伏智能巡检方法. 吉林电力. 2024(03): 28-31 .
    5. 温建国. 智能无人机红外巡检技术在光伏电站故障诊断中的应用. 中国战略新兴产业. 2024(26): 23-25 .
    6. 侯伟,陈雅,宋承继,刘强锋. 基于改进YOLOv5算法的无人机巡检图像智能识别方法. 微型电脑应用. 2024(09): 26-30+36 .
    7. 杨梅,马建新,陈炳森,赵泽政. 光伏电站无人机自动巡检及故障诊断技术应用. 计量与测试技术. 2024(09): 89-92 .
    8. 吴张宇,吴池莉,于慧铭,政幸男,张啸宇. 面向大规模光伏电站的无人机巡检路径规划策略. 综合智慧能源. 2024(11): 46-53 .
    9. 李峰,林维修,乐锋,许育燕,张斌. 一种基于无人机的光伏异常检测方法研究. 人工智能科学与工程. 2024(04): 86-92 .
    10. 陈大涛,高伟新,宇文磊县,赵良成,高永鑫,吴良,回峰. 基于无人机巡查的光伏电站检查系统设计. 集成电路应用. 2024(12): 72-75 .
    11. 曹瑞安. 基于AI机器视觉技术的新能源无人值守场站自动巡检方法. 电力大数据. 2024(11): 48-56 .
    12. 吕德利,王旋. 一种基于GPS定位技术的无人机智能光伏巡检系统. 科技创新与应用. 2023(06): 37-40 .
    13. 李德维. 光伏电站组件诊断中无人机智能巡检的应用. 光源与照明. 2023(01): 102-105 .
    14. 潘巧波,李昂,何梓瑜,唐梓彭. 数字化电厂智慧平台在光伏电站的应用. 黑龙江电力. 2023(02): 137-142 .
    15. 张永伟,李贵,马玉权,汪海波. 基于高精度快速故障识别的智能光伏视频巡检系统研究. 电力信息与通信技术. 2023(06): 73-78 .
    16. 范群. 智能集控平台在光伏发电站生产中的应用策略. 光源与照明. 2023(06): 142-144 .
    17. 白玉龙,孙茹洁,哈永华. 光伏电站自主巡检中的无人机视觉定位算法研究. 电子元器件与信息技术. 2023(05): 72-75 .
    18. 邓拥正,杨健. 浅谈无人机在光伏电站巡检中的应用. 红水河. 2023(04): 69-72 .
    19. 王佳文,朱永灿,王帅,李科锋. 航拍光伏组件图像的畸变校正方法研究. 湖南电力. 2023(04): 74-79 .
    20. 周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(12): 1161-1168 . 本站查看
    21. 李智强. 基于无人机航拍摄影的变电站运行环境智能巡检方法. 电气技术与经济. 2023(10): 146-148 .
    22. 艾上美,周剑峰,张必朝,张涛,王红斌. 基于改进SSD算法的光伏组件缺陷检测研究. 智慧电力. 2023(12): 53-58 .
    23. 周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(11): 1161-1168 . 本站查看
    24. 孙霞,张洁,赵厚群,张坤乾,缪玉婷. Petri网在架空电缆无人机巡检方面的研究. 绥化学院学报. 2022(12): 139-142 .
    25. 李垚,魏文震,杨增健,赵鑫,吕健. 基于大数据的变电站在线智能巡视系统的研究. 电力大数据. 2022(11): 47-55 .

    Other cited types(10)

Catalog

    Article views (582) PDF downloads (137) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return