Citation: | KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981. |
[1] |
王丽霞. 太阳能主动采暖室内热环境数值仿真[J]. 计算机仿真, 2021, 38(2): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202102018.htm
WANG Lixia. Numerical simulation of indoor thermal environment of solar active heating[J]. Computer Simulation, 2021, 38(2): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202102018.htm
|
[2] |
李伟. 太阳能光伏发电技术应用现状及未来发展趋势研究[J]. 江苏科技信息, 2018, 35(24): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KJXY201824016.htm
LI Wei. Research on application status and future development trend of solar photovoltaic power generation technology[J]. Jiangsu Science and Technology Information, 2018, 35(24): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KJXY201824016.htm
|
[3] |
GUO S, Schneller E, Davis K O, et al. Quantitative analysis of crystalline silicon wafer PV modules by electroluminescence imaging[C]//IEEE 43rd Photovoltaic Specialists Conference(PVSC), 2016: 3688-3692.
|
[4] |
Kandlikar S G, Perez Raya I, Raghupathi P A, et al. Infrared imaging technology for breast cancer detection–current status, protocols and new directions[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2303-2320. DOI: 10.1016/j.ijheatmasstransfer.2017.01.086
|
[5] |
ZHANG H, LUO C, WANG Q, et al. A novel infrared video surveillance system using deep learning based techniques[J]. Multimedia Tools and Applications, 2018, 77: 26657-26676. DOI: 10.1007/s11042-018-5883-y
|
[6] |
Cazzato D, Cimarelli C, Sanchez-Lopez J L, et al. A survey of computer vision methods for 2D object detection from unmanned aerial vehicles[J]. Journal of Imaging, 2020, 6(8): 78. DOI: 10.3390/jimaging6080078
|
[7] |
Park J, CHEN J, Cho Y K, et al. CNN-based person detection using infrared images for night-time intrusion warning systems[J]. Sensors, 2019, 20(1): 34. DOI: 10.3390/s20010034
|
[8] |
Piniarski K, Pawłowski P. Efficient pedestrian detection with enhanced object segmentation in far IR night vision[C]//2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) of IEEE, 2017: 160-165.
|
[9] |
LI S, WANG C, HUANG H. Infrared imaging guidance missile's target recognition simulation based on air-to-air combat[C]//Optical Sensing and Imaging Technologies and Applications of SPIE, 2018, 10846: 768-780.
|
[10] |
JIAO L, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J]. IEEE Access, 2019, 7: 128837-128868. DOI: 10.1109/ACCESS.2019.2939201
|
[11] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. DOI: 10.1145/3065386
|
[12] |
Thangaraj R, Anandamurugan S, Kaliappan V K. Automated tomato leaf disease classification using transfer learning-based deep convolution neural network[J]. Journal of Plant Diseases and Protection, 2021, 128(1): 73-86. DOI: 10.1007/s41348-020-00403-0
|
[13] |
Wenham P R, Price W H, Blundell G. Apolipoprotein E genotyping by one-stage PCR[J]. The Lancet, 1991, 337(8750): 1158-1159.
|
[14] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 580-587.
|
[15] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824
|
[16] |
Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
[17] |
REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 28: 1137-1149.
|
[18] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
[19] |
Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
|
[20] |
Redmon J, Farhadi A. Yolov3: an incremental improvement[J/OL]. preprint arXiv: 1804.02767. https://doi.org/10.48550/arXiv.1804.02767.
|
[21] |
Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. [2020-04-23]. arXiv preprint arXiv: 2004.10934, https://doi.org/10.48550/arXiv.2004.10934.
|
[22] |
LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]// 14th European Conference of Computer Vision–ECCV, 2016: 21-37.
|
[23] |
FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[J/OL]. Computer Science, 2017. https://arxiv.org/abs/1701.06659.
|
[24] |
Jocher G, Stoken Alex, Borovec J, et al. Ultralytics/yolov5: v5. 0-YOLOv5-P6 1280 models, AWS, Supervise. ly and YouTube integrations[Z/OL]. [2021-04-21]https://www.semanticscholar.org/paper/ultralytics-yolov5%3A-v5.0-YOLOv5-P6-1280-models%2C-and-Jocher-Stoken/fd550b29c0efee17be5eb1447fddc3c8ce66e838, Doi: 10.5281/ZENODO.4679653.
|
[25] |
侯志强, 刘晓义, 余旺盛, 等. 使用GIoU改进非极大值抑制的目标检测算法[J]. 电子学报, 2021, 49(4): 10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202104010.htm
HOU Zhiqiang, LIU Xiaoyi, YU Wangsheng et al. Improved object detection algorithm for non-maximum suppression using GIoU[J]. Acta Electronica Sinica, 2021, 49(4): 10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202104010.htm
|
[26] |
LI X, DING L, WANG L, et al. FPGA accelerates deep residual learning for image recognition[C]//2nd Information Technology, Networking, Electronic and Automation Control Conference(ITNEC) of IEEE, 2017: 837-840.
|