KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981.
Citation: KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981.

Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm

More Information
  • Received Date: June 27, 2022
  • Revised Date: September 21, 2022
  • To solve the problem of difficulty in extracting features and poor real-time performance of existing photovoltaic power station defect identification methods, which lead to low identification accuracy of photovoltaic module defect detection, this paper proposes a photovoltaic power station infrared thermal imaging defect detection method based on an improved YOLO v5 algorithm. The improved YOLO v5 algorithm primarily adds an attention mechanism SE module to the original core and improves the loss function from GIoU to EIoU to enhance the model convergence effect. Finally, the knowledge graph (KG) module is used to balance the feature pyramid structure and optimize the model to improve the YOLO v5 algorithm's recognition accuracy and convergence effects. The improved network structure was applied to the YOLO v5s model, whereby the average detection accuracy mAP used in the detection of infrared images of photovoltaic power plants reached 92.8%, which is 4.5% higher than that of the original YOLO v5s algorithm (88.3%). The effect of convergence on the precision and recall rate was also improved compared with the original YOLO v5 algorithm model. By applying the enhanced network structure to the three models (l, m, and x), detection accuracy was also improved. Consequently, the improved YOLO v5 algorithm is suitable for the four models.
  • [1]
    王丽霞. 太阳能主动采暖室内热环境数值仿真[J]. 计算机仿真, 2021, 38(2): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202102018.htm

    WANG Lixia. Numerical simulation of indoor thermal environment of solar active heating[J]. Computer Simulation, 2021, 38(2): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202102018.htm
    [2]
    李伟. 太阳能光伏发电技术应用现状及未来发展趋势研究[J]. 江苏科技信息, 2018, 35(24): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KJXY201824016.htm

    LI Wei. Research on application status and future development trend of solar photovoltaic power generation technology[J]. Jiangsu Science and Technology Information, 2018, 35(24): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KJXY201824016.htm
    [3]
    GUO S, Schneller E, Davis K O, et al. Quantitative analysis of crystalline silicon wafer PV modules by electroluminescence imaging[C]//IEEE 43rd Photovoltaic Specialists Conference(PVSC), 2016: 3688-3692.
    [4]
    Kandlikar S G, Perez Raya I, Raghupathi P A, et al. Infrared imaging technology for breast cancer detection–current status, protocols and new directions[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2303-2320. DOI: 10.1016/j.ijheatmasstransfer.2017.01.086
    [5]
    ZHANG H, LUO C, WANG Q, et al. A novel infrared video surveillance system using deep learning based techniques[J]. Multimedia Tools and Applications, 2018, 77: 26657-26676. DOI: 10.1007/s11042-018-5883-y
    [6]
    Cazzato D, Cimarelli C, Sanchez-Lopez J L, et al. A survey of computer vision methods for 2D object detection from unmanned aerial vehicles[J]. Journal of Imaging, 2020, 6(8): 78. DOI: 10.3390/jimaging6080078
    [7]
    Park J, CHEN J, Cho Y K, et al. CNN-based person detection using infrared images for night-time intrusion warning systems[J]. Sensors, 2019, 20(1): 34. DOI: 10.3390/s20010034
    [8]
    Piniarski K, Pawłowski P. Efficient pedestrian detection with enhanced object segmentation in far IR night vision[C]//2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) of IEEE, 2017: 160-165.
    [9]
    LI S, WANG C, HUANG H. Infrared imaging guidance missile's target recognition simulation based on air-to-air combat[C]//Optical Sensing and Imaging Technologies and Applications of SPIE, 2018, 10846: 768-780.
    [10]
    JIAO L, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J]. IEEE Access, 2019, 7: 128837-128868. DOI: 10.1109/ACCESS.2019.2939201
    [11]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. DOI: 10.1145/3065386
    [12]
    Thangaraj R, Anandamurugan S, Kaliappan V K. Automated tomato leaf disease classification using transfer learning-based deep convolution neural network[J]. Journal of Plant Diseases and Protection, 2021, 128(1): 73-86. DOI: 10.1007/s41348-020-00403-0
    [13]
    Wenham P R, Price W H, Blundell G. Apolipoprotein E genotyping by one-stage PCR[J]. The Lancet, 1991, 337(8750): 1158-1159.
    [14]
    Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 580-587.
    [15]
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824
    [16]
    Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
    [17]
    REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 28: 1137-1149.
    [18]
    Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
    [19]
    Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
    [20]
    Redmon J, Farhadi A. Yolov3: an incremental improvement[J/OL]. preprint arXiv: 1804.02767. https://doi.org/10.48550/arXiv.1804.02767.
    [21]
    Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. [2020-04-23]. arXiv preprint arXiv: 2004.10934, https://doi.org/10.48550/arXiv.2004.10934.
    [22]
    LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]// 14th European Conference of Computer VisionECCV, 2016: 21-37.
    [23]
    FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[J/OL]. Computer Science, 2017. https://arxiv.org/abs/1701.06659.
    [24]
    Jocher G, Stoken Alex, Borovec J, et al. Ultralytics/yolov5: v5. 0-YOLOv5-P6 1280 models, AWS, Supervise. ly and YouTube integrations[Z/OL]. [2021-04-21]https://www.semanticscholar.org/paper/ultralytics-yolov5%3A-v5.0-YOLOv5-P6-1280-models%2C-and-Jocher-Stoken/fd550b29c0efee17be5eb1447fddc3c8ce66e838, Doi: 10.5281/ZENODO.4679653.
    [25]
    侯志强, 刘晓义, 余旺盛, 等. 使用GIoU改进非极大值抑制的目标检测算法[J]. 电子学报, 2021, 49(4): 10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202104010.htm

    HOU Zhiqiang, LIU Xiaoyi, YU Wangsheng et al. Improved object detection algorithm for non-maximum suppression using GIoU[J]. Acta Electronica Sinica, 2021, 49(4): 10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202104010.htm
    [26]
    LI X, DING L, WANG L, et al. FPGA accelerates deep residual learning for image recognition[C]//2nd Information Technology, Networking, Electronic and Automation Control Conference(ITNEC) of IEEE, 2017: 837-840.
  • Related Articles

    [1]ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366.
    [2]DU Nini, SHAN Kaidong, WEI Shasha. LPformer: Laplacian Pyramid Multi-Level Transformer for Infrared Small Target Detection[J]. Infrared Technology , 2023, 45(6): 630-638.
    [3]DAI Jian, ZHAO Xu, LI Lianpeng, LIU Wen, CHU Xinyue. Improved YOLOv5-based Infrared Dim-small Target Detection under Complex Background[J]. Infrared Technology , 2022, 44(5): 504-512.
    [4]JIANG Haijun, CHEN Li. Application of Laplace Pyramid Fusion in Infrared Nondestructive Testing Technology[J]. Infrared Technology , 2019, 41(12): 1151-1155.
    [5]HUANG Fusheng, LIN Suzhen. Multi-Band Image Fusion Rules Comparison Based on the Laplace Pyramid Transformation Method[J]. Infrared Technology , 2019, 41(1): 64-71.
    [6]GU Tingting, ZHAO Haitao, SUN Shaoyuan. Depth Estimation of Infrared Image Based on Pyramid Residual Neural Networks[J]. Infrared Technology , 2018, 40(5): 417-423.
    [7]LI Bing, SU Juan, HAO Yuanyuan. Infrared Image Simulation Based on SE-Workbench-IR[J]. Infrared Technology , 2016, 38(8): 683-687.
    [8]ZONG Jing-guo, ZHANG Jian-qi, QIN Han-lin, LIU De-lian. Anomaly Detection for Hyperspectral Image Based on Nonsubsampled Pyramid Transform[J]. Infrared Technology , 2011, 33(1): 56-60. DOI: 10.3969/j.issn.1001-8891.2011.01.013
    [9]WANG Jian-Dong, LUO Jun. A Coarse to Fine Subblock Pyramid Predictive Successive Elimination Algorithm[J]. Infrared Technology , 2007, 29(10): 598-602. DOI: 10.3969/j.issn.1001-8891.2007.10.010
    [10]A Method of Scanned Image Denoising Based on Morphological Pyramid[J]. Infrared Technology , 2004, 26(2): 40-43. DOI: 10.3969/j.issn.1001-8891.2004.02.010
  • Cited by

    Periodical cited type(6)

    1. 马家晟,杨国斌,姜春华,刘桐辛. 基于YOLOX对斜返电离图的模式识别和前沿提取(英文). Wuhan University Journal of Natural Sciences. 2025(01): 69-78 .
    2. 任喜伟,余杰,韩欣,李兆允,杨梦璐,何立风. 基于改进YOLOv5s网络的光伏组件缺陷检测方法. 太阳能学报. 2025(03): 428-434 .
    3. 任毅,王鹏,倪彬,顾鹏,汪易萱,刘凯波. 基于改进YOLOv5s的绝缘子定位检测及红外故障识别. 测控技术. 2024(08): 7-14+22 .
    4. 耿明丰. 人工智能在光伏组件缺陷检测中的应用. 集成电路应用. 2024(07): 406-407 .
    5. 赵薇,曹慧媛,吴燕琪,陶洁,于亚萍. 红外热成像在聚焦换能器焦平面测量中的应用. 计量科学与技术. 2024(10): 73-78+72 .
    6. 王云冰,付晓刚,牛源. 基于无人机光伏巡检的路线优化与故障检测. 上海电机学院学报. 2023(05): 275-280 .

    Other cited types(5)

Catalog

    Article views (267) PDF downloads (78) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return