Citation: | SHI Feng, CHENG Hongchang, YAN Lei, GUO Xin, LI Shilong, QIU Hongjin, DING Xiwen. Advances in Underwater Photoelectric Imaging Technology[J]. Infrared Technology , 2023, 45(10): 1066-1083. |
[1] |
曾晓光, 金伟晨, 赵羿羽, 等. 海洋开发装备技术发展现状与未来趋势研判[J]. 舰船科学技术, 2019, 41(17): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201917002.htm
ZENG Xiaoguang, JIN Weichen, ZHAO Yiyu, et al. Current situation and development of marine development equipment technology[J]. Ship Science and Technology, 2019, 41(17): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201917002.htm
|
[2] |
吕文磊, 张旭, 刘可. 一种距离选通水下激光成像系统设计与实验研究[J]. 兵器装备工程学报, 2019, 40(8): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201908039.htm
LV Wenlei, ZHANG Xu, LIU Ke. Design and experimental study on a range-gated underwater laser imaging system[J]. Arsenal of Ordnance Equipment Engineering, 2019, 40(8) : 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201908039.htm
|
[3] |
姜朝宇, 罗涛, 王亚波, 等. 水下线状目标距离选通成像探测研究[J]. 舰船科学技术, 2018, 40(19): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201819026.htm
JIANG Chaoyu, LUO Tao, WANG Yabo, et al. Experimental study on underwater linear objects detection using underwater range gated imaging method[J]. Ship Science and Technology, 2018, 40(19): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201819026.htm
|
[4] |
王书宇, 艾磊, 陶声祥, 等. 便携式远距离激光选通成像系统研究[J]. 兵器装备工程学报, 2018, 39(9): 166-170. DOI: 10.11809/bqzbgcxb2018.09.035
WANG Shuyu, AI Lei, TAO Shengxiang, et al. Research on portable long range laser range-gated imaging system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9) : 166-170. DOI: 10.11809/bqzbgcxb2018.09.035
|
[5] |
曹峰梅, 金伟其, 黄有为, 等. 水下光电成像技术与装备研究进展(上)——水下激光距离选通技术[J]. 红外技术, 2011, 33(2): 63-69. DOI: 10.3969/j.issn.1001-8891.2011.02.001
CAO Fengmei, JIN Weiqi, HUANG Youwei, et al. Review of underwater opto-electrical imaging technology and equipment(Ⅰ)——underwater laser range-gated imaging technology[J]. Infrared Technology, 2011, 33(2): 63-69. DOI: 10.3969/j.issn.1001-8891.2011.02.001
|
[6] |
王红萍, 熊俊. 水下激光成像测量技术应用研究[J]. 舰船电子工程, 2019, 39(7): 10-12, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201907004.htm
WANG Hongping, XIONG Jun. Study on application of the underwater laser imaging technique[J]. Ship Electronic Engineering, 2019, 39(7): 10-12, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201907004.htm
|
[7] |
全向前, 陈祥子, 全永前, 等. 深海光学照明与成像系统分析及进展[J]. 中国光学, 2018, 11(2): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201802001.htm
QUAN Qian, CHEN Xiangzi, QUAN Yongqian, et al. Analysis and research progress of deep-sea optical illumination and imaging system [J]. China Optics, 2018, 11(2): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201802001.htm
|
[8] |
张清博, 张晓晖, 韩宏伟. 基于改进生成对抗网络的水下激光图像后向散射光修复方法[J]. 激光与光电子学进展, 2019, 56(4): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201904011.htm
ZHANG Qingbo, ZHANG Xiaohui, HAN Hongwei. Backscattered light repairing method for underwater laser image based on improved generative adversarial network[J]. Progress of Laser and Optoelectronics, 2019, 56(4): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201904011.htm
|
[9] |
赵阳, 盖志刚, 赵杰, 等. 距离选通水下激光成像技术研究[J]. 物流工程与管理, 2014, 36(7): 269-270. https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY201407094.htm
ZHAO Yang, GAI Zhigang, ZHAO Jie, et al. Research on range-gated underwater laser imaging technology[J]. Logistics Engineering and Management, 2014, 36(7): 269-270. https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY201407094.htm
|
[10] |
孙健, 周亚民. 距离选通激光水下成像系统研究[J]. 舰船电子工程, 2009, 29(2): 24-26, 46. DOI: 10.3969/j.issn.1627-9730.2009.02.007
SUN Jian, ZHOU Yamin. Research on the underwater laser range-gated imaging system[J]. Ship Electronic Engineering, 2009, 29(2): 24-26, 46. DOI: 10.3969/j.issn.1627-9730.2009.02.007
|
[11] |
赵美晶. 水下偏振鬼成像方法研究[D]. 大连: 大连海事大学, 2019.
ZHAO Meijing. Research on Underwater Polarization Ghost Imaging Method [D]. Dalian : Dalian Maritime University, 2019.
|
[12] |
Duntley S Q. Light in the sea[J]. J. Opt. Soc. Am., 1963, 53(2): 214-233. DOI: 10.1364/JOSA.53.000214
|
[13] |
梁磊. 复杂水下环境的目标偏振成像探测技术[D]. 桂林: 桂林电子科技大学, 2020.
LIANG Lei. Target Polarization Imaging Detection Technology for Complex Underwater Environment[D]. Guilin: Guilin University of Electronic Science and Technology, 2020.
|
[14] |
谭亚运. 水下脉冲激光近程周向扫描探测技术研究[D]. 南京: 南京理工大学, 2017.
TAN Yayun. Research on Short-range Circumferential Scanning Detection Technology of Underwater Pulsed Laser[D]. Nanjing: Nanjing University of Science and Technology, 2017.
|
[15] |
胡玲, 王霞, 延波, 等. 水下距离选通成像系统调制传递函数模型分析[J]. 红外与激光工程, 2015, 44(11): 3262-3269. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201511017.htm
HU Ling, WANG Xia, YAN Bo, et al. Analysis of underwater range-gated imaging system MTF[J]. Infrared and Laser Engineering, 2015, 44(11) : 3262-3269. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201511017.htm
|
[16] |
付学志, 王庆胜, 邓代竹, 等. 距离选通水下激光成像作用距离简化核算方法[J]. 激光与红外, 2021, 51(3): 306-310. DOI: 10.3969/j.issn.1001-5078.2021.03.008
FU Xezhi, WANG Qingsheng, DENG Daizhu, et al. A simplified accounting method for the range of distance separation laser imaging under water[J]. Laser and infrared, 2021, 51(3): 306-310. DOI: 10.3969/j.issn.1001-5078.2021.03.008
|
[17] |
王磊, 徐智勇, 张启衡, 等. 蓝绿激光水下成像系统的探测灵敏度分析[J]. 红外与激光工程, 2012, 41(1): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201201015.htm
WANG Lei, XU Zhiyong, ZHANG Qiheng, et al. Detection sensitivity analysis of underwater blue-green laser imaging system[J]. Infrared and Laser Engineering, 2012, 41(1): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201201015.htm
|
[18] |
许廷发, 苏畅, 罗璇, 等. 水下距离选通降质图像的增强[J]. 北京理工大学学报, 2017, 37(8): 853-857, 862. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201708015.htm
XU Tingfa, SU Chang, LUO Xuan, et al. Enhancement of the underwater range-gated degraded image[J]. Journal of Beijing University of Technology, 2017, 37(8) : 853-857, 862. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201708015.htm
|
[19] |
王新伟, 孙亮, 雷平顺, 等. 水下超视距三角形距离能量相关三维成像(特邀)[J]. 红外与激光工程, 2018, 47(9): 903001-0903001(8). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201809002.htm
WANG Xinwei, SUN Liang, LEI Pingshun, et al. Underwater over-the-horizon triangle distance energy-related three-dimensional imaging (invited)[J]. Infrared and Laser Engineering, 2018, 47(9): 903001-0903001(8). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201809002.htm
|
[20] |
王新伟, 孙亮, 王敏敏, 等. 水下二维及三维距离选通成像去噪技术研究[J]. 红外与激光工程, 2020, 49(2): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002004.htm
WANG Xinwei, SUN Liang, WANG Minmin, et al. Deblurring methods for underwater 2D and 3D range-gated imaging [J]. Infrared and Laser Engineering, 2020, 49(2): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002004.htm
|
[21] |
孙骁禾. 水下激光同轴同步扫描成像系统[D]. 青岛: 中国海洋大学, 2005.
SUN Xiaohe. Underwater Laser Coaxial Synchronous Scanning Imaging System[D]. Qingdao: Ocean University of China, 2005.
|
[22] |
Caimi F M, Dalgleish F R, Giddings T E, et al. Pulse versus CW laser line scan imaging detection methods: simulation results[C]//Proc. MTS/IEEE Oceans Europe, 2007: 1-4.
|
[23] |
戴佳佳. 基于结构光的三维成像技术研究[D]. 成都: 电子科技大学, 2022.
DAI Jiajia. Research on 3D imaging technology based on structured light[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
[24] |
周永昊. 基于线结构光的水下微形貌三维信息获取技术研究[D]. 郑州: 华北水利水电大学, 2021.
ZHOU Yonghao. Research on 3D Information Acquisition Technology of Underwater Micro-topography Based on Line Structured Light [D]. Zhengzhou: North China University of Water Resources and Hydropower, 2021.
|
[25] |
苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201508020.htm
SU Xianyu, ZHANG Qican, CHEN Wenjing. Structured light three-dimensional imaging technology[J]. China Laser, 2014, 41(2): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201508020.htm
|
[26] |
González E P, Díaz-Pache F S T, Mosquera L P, et al. Bidimensional measurement of an underwater sediment surface using a 3D-scanner[J]. Optics & Laser Technology, 2007, 39(3): 481-489.
|
[27] |
Prats M, Fernandez J J, Sanz P J. An approach for semi-autonomous recovery of unknown objects in underwater environments[C] //13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) of IEEE, 2012: 1452-1457.
|
[28] |
赫连雪艳. 水下结构光三维测量系统建模与标定[D]. 郑州: 华北水利水电大学, 2020.
HE Lianxueyan. Modeling and Calibration of Underwater Structured Light Three-dimensional Measurement System[D]. Zhengzhou: North China University of Water Resources and Hydropower, 2020.
|
[29] |
王玲玲. 基于双目立体视觉的水下三维重建[D]. 杭州: 浙江大学, 2011.
WANG Lingling. Underwater 3D Reconstruction Based on Binocular Stereo Vision[D]. Hangzhou: Zhejiang University, 2011.
|
[30] |
乔金鹤. 基于双目立体视觉的水下三维重建技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
QIAO Jinhe. Research on Underwater 3D Reconstruction Technology Based on Binocular Stereo Vision[D]. Harbin: Harbin Engineering University, 2018.
|
[31] |
李文莉. 面向水下三维重建的光视觉特征提取与匹配方法研究[D]. 沈阳: 沈阳理工大学, 2017.
LI Wenli. Research on Optical Visual Feature Extraction and Matching Methods for Underwater Three-dimensional Reconstruction[D]. Shenyang : Shenyang University of Technology, 2017.
|
[32] |
丁万山, 刘艳. 水中物体的光学三维形貌测量的研究[J]. 光学学报, 2007(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200701012.htm
DING Wanshan, LIU Yan. Optical measurement of object's surface three-dimensional shape in water[J]. Journal of Optics, 2007(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200701012.htm
|
[33] |
王宗义. 线结构光视觉传感器与水下三维探测[D]. 哈尔滨: 哈尔滨工程大学, 2005.
WANG Zongyi. Line Structured Light Vision Sensor and Underwater Three-dimensional Detection[D]. Harbin: Harbin Engineering University, 2005.
|
[34] |
Narasimhan S G, Nayar K, Sun B, et al. Structured light in scattering media[C]//Proc. of IEEE, 2005, 1: 420-427.
|
[35] |
Levoy M, CHEN B, Vaish V, et al. Synthetic aperture confocal imaging[J]. ACM Trans Graphics, 2004, 23: 825-834.
|
[36] |
邵晓鹏, 刘飞, 李伟, 等. 计算成像技术及应用最新进展[J]. 激光与光电子学进展, 2020, 57(2): 11-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202002002.htm
SHAO Xiaopeng, LIU Fei, LI Wei, et al. Latest progress in computational imaging technology and application[J]. Advances in Laser and Optoelectronics, 2020, 57(2): 11-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202002002.htm
|
[37] |
VELLEKOOP I M, AEGERTER C M. Focusing light through living tissue[C]//SPIE, 2010, 7554: 755430.
|
[38] |
VELLEKOOP I M. Feedback-based wavefront shaping[J]. Optics Express, 2015, 23(9): 12189-12206.
|
[39] |
VELLEKOOP I M, LAGENDIJK A, MOSK A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4(5): 320-322.
|
[40] |
KATZ O, SMALL E, SILLBERBERG Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 2012, 6(8): 549-553.
|
[41] |
POPOFF S M, LEROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10): 100601.
|
[42] |
LIUTKUS A, MARTINA D, POPOFF S, et al. Imaging with nature: compressive imaging using a multiply scattering medium[J]. Scientific Reports, 2015(4): 5552.
|
[43] |
ANDREOLI D, VOLPE U, POPOFF S, et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 2015(5): 10347.
|
[44] |
DONG J, KRZAKALA F, GIGAN S. Spectral method for multiplexed phase retrieval and application in optical imaging in complex media[C]//IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), 2019: 4936-4967.
|
[45] |
YAQOOB Z, PSALTIS D, FELD M S, et al. Optical phase conjugation for turbidity supression in biological samples[J]. Nature Photonics, 2008(2): 110-115.
|
[46] |
王朋. 基于压缩感知的水下偏振光成像技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2015.
WANG Peng. Research on Underwater Polarized Light Imaging Technology Based on Compressed Sensing[D]. Xi 'an: Graduate School of Chinese Academy of Sciences (Xi 'an Institute of Optics and Fine Mechanics), 2015.
|
[47] |
张倩. 基于主动式线偏振光照射的偏振成像实验研究[D]. 成都: 电子科技大学, 2020.
ZHANG Qian. Experimental Study of Polarization Imaging Based on Active Linearly Polarized Light Irradiation[D]. Chengdu : University of Electronic Science and Technology of China, 2020.
|
[48] |
刘重阳. 基于计算机视觉的透明材料缺陷检测系统研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
LIU Zhongyang. Research on Defect Detection System of Transparent Materials Based on Computer Vision [D]. Harbin: Harbin University of Science and Technology, 2020.
|
[49] |
刘飞, 吴晓琴, 段景博, 等. 浅谈计算成像在光电探测中的应用(特邀)[J]. 光子学报, 2021, 50(10): 1011001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202110008.htm
LIU Fei, WU Xiaoqin, DUAN Jingbo, et al. An introduction of application of computational imaging in photoelectric detection(Invited) [J]. Photonic Journal, 2021, 50(10): 1011001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202110008.htm
|
[50] |
ROWE M P, PUGH E N, TYO J S, et al. Polarization-difference imaging: a biologically inspired technique for observation through scattering media[J]. Optics Letters, 1995, 20(6): 608-610.
|
[51] |
SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587.
|
[52] |
HUANG B, LIU T, HU H, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838.
|
[53] |
HU H, ZHAO L, HUANG B, et al. Enhancing visibility of polarimetric underwater image by transmittance correction[J]. IEEE Photonics Journal, 2017, 9(3): 1-10.
|
[54] |
LIU F, WEI Y, HAN P, et al. Polarization-based exploration for clear underwater vision in natural illumination[J]. Optics Express, 2019, 27(3): 3629-3641.
|
[55] |
韩平丽. 水下目标偏振成像探测技术研究[D]. 西安: 西安电子科技大学, 2018.
HAN Pingli. Underwater Targets Detection Based on Polarization Imaging[D]. Xi'an: Xidian University, 2018: 67-78.
|
[56] |
韩平丽, 刘飞, 张广, 等. 多尺度水下偏振成像方法[J]. 物理学报, 2018, 67(5): 054202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201805013.htm
HAN Pingli, LIU Fei, ZHANG Guang, et al. Multi-scale analysis method of underwater polarization imaging[J]. Acta Physica Sinica, 2018, 67(5): 054202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201805013.htm
|
[57] |
Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.
|
[58] |
Klyshko D N. Two-photon light: influence of filtration and a new possible EPR experiment[J]. Physics Letters A, 1988, 128(3-4): 133-137.
|
[59] |
Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429.
|
[60] |
Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 2001, 87(12): 123602.
|
[61] |
Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.
|
[62] |
LE M, WANG G, ZHENG H, et al. Underwater computational ghost imaging[J]. Optics Express, 2017, 25(19): 22859-22868.
|
[63] |
LUO C L, LI Z L, XU J H, et al. Computational ghost imaging and ghost diffraction in turbulent ocean[J]. Laser Physics Letters, 2018, 15(12): 125205.
|
[64] |
ZHANG Y, LI W, WU H, et al. High-visibility underwater ghost imaging in low illumination[J]. Optics Communications, 2019, 441: 45-48.
|
[65] |
特伦斯. 谢诺夫斯基. 深度学习[M]. 姜悦兵译. 北京: 中信出版社, 2019.
Terrence Shenowski. Deep Learning[M]. Beijin : CITIC Press, 2019.
|
[66] |
瀧雅人. 深度学习入门[M]. 杨秋香译. 北京: 机械工业出版社, 2020.
LONG Yaren. Introduction to Deep Learning[M]. Beijing: Mechanical Industry Press, 2020.
|
[67] |
ANDO T, HORISAKI R, TANIDA J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26): 33902-33910.
|
[68] |
LI Y, XUE Y, TIAN L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10): 1181-1190.
|
[69] |
LYU M, WANG H, LI G, et al. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002.
|
[70] |
LAI X, LI Q, WU X, et al. Mutual transfer learning of reconstructing images through a multimode fiber or a scattering medium[J]. IEEE Access, 2021(9): 68387-68395.
|
[71] |
苏俊宏, 尚小燕, 弥谦. 光电技术基础[M]. 北京: 国防工业出版社, 2011.
SU Junhong, SHANG Xiaoyan, MI Qian. Fundamentals of Optoelectronic Technology[M]. Beijing: National Defense Industry Press, 2011.
|
[72] |
Bigas M, Cabruja E, Forest J, et al. Review of CMOS image sensors[J]. Microelectronics Journal, 2006, 37(5): 433-451.
|
[73] |
胡仓陆, 焦岗成, 郭晖, 等. 宽光谱高蓝绿响应GaAsP阴极微光像增强器[C]//国防光电子论坛第二届新型探测技术及其应用研讨会论文集, 2015: 15.
HU Canglu, JIAO Gangcheng, GUO Hui, et al. Wide-spectrum and high blue-green response GaAsP cathode low-light-level image intensifier [C]//Proceedings of the Second National Defense Optoelectronics Forum Symposium on New Detection Technologies and Their Applications, 2015: 15.
|
[74] |
程宏昌, 端木庆铎, 石峰, 等. 双微通道板紫外像增强器工作特性研究[J]. 真空科学与技术学报, 2013, 33(6): 524-527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201306005.htm
CHENG Hongchang, DUAN Muqingduo, SHI Feng, et al. Study on the working characteristics of dual microchannel plate UV image intensifier [J]. Journal of Vacuum Science and Technology, 2013, 33(6): 524-527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201306005.htm
|
[1] | LIANG Xiuman, ZHAO Jiayang, YU Haifeng. Lightweight Underwater Target Detection Algorithm Based on YOLOv8[J]. Infrared Technology , 2024, 46(9): 1015-1024. |
[2] | MOU Xingang, ZHU Tailong, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Lightweight Multiscale Downsampling Network[J]. Infrared Technology , 2024, 46(5): 501-509. |
[3] | LI Jiayang, ZHOU Yingyue, YANG Yang, LI Xiaoxia. High-Security Finger Vein Recognition System Using Lightweight Neural Network[J]. Infrared Technology , 2024, 46(2): 168-175. |
[4] | ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512. |
[5] | SHENG Dajun, ZHANG Qiang. Infrared Armored Target Detection Based on Edge-perception in Deep Neural Network[J]. Infrared Technology , 2021, 43(8): 784-791. |
[6] | YANG Qili, ZHOU Binghong, ZHENG Wei, LI Mingtao. Small Infrared Target Detection Based on Fully Convolutional Network[J]. Infrared Technology , 2021, 43(4): 349-356. |
[7] | CHEN Gao, WANG Weihua, LIN Dandan. Infrared Vehicle Target Detection Based on Convolutional Neural Network without Pre-training[J]. Infrared Technology , 2021, 43(4): 342-348. |
[8] | ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan. Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network[J]. Infrared Technology , 2021, 43(3): 251-257. |
[9] | YI Shi, ZHOU Siyao, SHEN Lian, ZHU Jinming. Vehicle-based Thermal Imaging Target Detection Method Based on Enhanced Lightweight Network[J]. Infrared Technology , 2021, 43(3): 237-245. |
[10] | SHEN Xu, MENG Wei, CHENG Xiaohui, WANG Xinzheng. Object Tracking and Recapture Model Based on Deep Detection Network Under Airborne Platform[J]. Infrared Technology , 2020, 42(7): 624-631. |