Citation: | BAI Hao, BAI Tingzhu. Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network[J]. Infrared Technology , 2024, 46(2): 176-182. |
[1] |
尚磊. 红外成像系统关键技术研究与实现[D]. 西安: 西安电子科技大学, 2013.
SHANG Lei. The Key Technology Research and Implementation of Infrared Imaging System[D]. Xi'an: Xidian University, 2013.
|
[2] |
廖小华, 陈念年, 蒋勇, 等. 改进的卷积神经网络红外图像超分辨率算法[J]. 红外技术, 2020, 42(1): 75-80. http://hwjs.nvir.cn/article/id/hwjs202001011
LIAO Xiaohua, CHEN Niannian, JIANG Yong, et al. Infrared image super-resolution using improved convolutional neural network[J]. Infrared Technology, 2020, 42(1): 75-80. http://hwjs.nvir.cn/article/id/hwjs202001011
|
[3] |
李毅. 基于视觉模型的红外图像增强技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.
LI Yi. Research on Technology of Infrared Image Enhancement Based on Human and Visual Model[D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of optics, precision machinery and Physics), 2016.
|
[4] |
田广强. 一种新颖高效的红外动态场景多目标检测跟踪[J]. 红外技术, 2018, 40(3): 259-263. http://hwjs.nvir.cn/article/id/hwjs201803010
TIAN Guangqiang. A novel algorithm for efficient multi-object detection and tracking for infrared dynamic frames[J]. Infrared Technology, 2018, 40(3): 259-263. http://hwjs.nvir.cn/article/id/hwjs201803010
|
[5] |
YANG W, ZHANG X, TIAN Y, et al. Deep learning for single image super-resolution: a brief review[J/OL]. 2018-08. DOI: 10.1109/TMM.2019.2919431.
|
[6] |
Atkinson P M, Tatnall A R. Introduction neural networks in remote sensing[J]. Int. J. Remote Sens., 1997, 18: 699-709. DOI: 10.1080/014311697218700
|
[7] |
Foody G, Arora M. An evaluation of some factors affecting the accuracy of classification by an artificial neural network[J]. Int. J. Remote Sens., 1997, 18: 799-810. DOI: 10.1080/014311697218764
|
[8] |
ZHONG Y, ZHANG L. An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery[J]. IEEE Trans. Geosci. Remote Sens., 2011, 50: 894-909.
|
[9] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436.
|
[10] |
DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision, 2014: 184-199.
|
[11] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Neural Information Processing Systems, 2014, DOI: 10.3156/JSOFT.29.5_177_2.
|
[12] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[13] |
Lim B, SON S, KIM H. Enhanced deep residual networks for single image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 1(2): 3.
|
[14] |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J/OL]. JMLR. org, 2015, DOI: 10.48550/arXiv.1502.03167.
|
[15] |
HUI Bingwei, SONG Zhiyong, FAN Hongqi, et al. A dataset for infrared image dim-small aircraft target detection and tracking under ground /air background[DS/OL]. V1. Science Data Bank, 2019[2024-02-03]. https://doi.org/10.11922/sciencedb.902.DOI:10.11922/sciencedb.902" target="_blank">10.11922/sciencedb.902">https://doi.org/10.11922/sciencedb.902.DOI:10.11922/sciencedb.902.
|
1. |
郭亮. 基于CGAN的近红外关联成像高分辨率重构. 智能计算机与应用. 2024(05): 144-149 .
![]() |