BAI Hao, BAI Tingzhu. Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network[J]. Infrared Technology , 2024, 46(2): 176-182.
Citation: BAI Hao, BAI Tingzhu. Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network[J]. Infrared Technology , 2024, 46(2): 176-182.

Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network

More Information
  • Received Date: July 07, 2021
  • Revised Date: August 14, 2021
  • This study proposes a super-resolution reconstruction algorithm for infrared gray images based on deep residual neural networks. Initially, the residual convolution module is employed to deepen the network, enhancing its learning capacity. This enables the convolutional layer to utilize more neighborhood information during learning, resulting in improved ability to process complex scenes. Subsequently, we used the skip connection method to increase the high-frequency information transmission to enhance the image details. Experimental results show that the proposed network can effectively enrich the details of the reconstructed image, and that the target contour in the reconstructed image is significantly improved.
  • [1]
    尚磊. 红外成像系统关键技术研究与实现[D]. 西安: 西安电子科技大学, 2013.

    SHANG Lei. The Key Technology Research and Implementation of Infrared Imaging System[D]. Xi'an: Xidian University, 2013.
    [2]
    廖小华, 陈念年, 蒋勇, 等. 改进的卷积神经网络红外图像超分辨率算法[J]. 红外技术, 2020, 42(1): 75-80. http://hwjs.nvir.cn/article/id/hwjs202001011

    LIAO Xiaohua, CHEN Niannian, JIANG Yong, et al. Infrared image super-resolution using improved convolutional neural network[J]. Infrared Technology, 2020, 42(1): 75-80. http://hwjs.nvir.cn/article/id/hwjs202001011
    [3]
    李毅. 基于视觉模型的红外图像增强技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.

    LI Yi. Research on Technology of Infrared Image Enhancement Based on Human and Visual Model[D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of optics, precision machinery and Physics), 2016.
    [4]
    田广强. 一种新颖高效的红外动态场景多目标检测跟踪[J]. 红外技术, 2018, 40(3): 259-263. http://hwjs.nvir.cn/article/id/hwjs201803010

    TIAN Guangqiang. A novel algorithm for efficient multi-object detection and tracking for infrared dynamic frames[J]. Infrared Technology, 2018, 40(3): 259-263. http://hwjs.nvir.cn/article/id/hwjs201803010
    [5]
    YANG W, ZHANG X, TIAN Y, et al. Deep learning for single image super-resolution: a brief review[J/OL]. 2018-08. DOI: 10.1109/TMM.2019.2919431.
    [6]
    Atkinson P M, Tatnall A R. Introduction neural networks in remote sensing[J]. Int. J. Remote Sens., 1997, 18: 699-709. DOI: 10.1080/014311697218700
    [7]
    Foody G, Arora M. An evaluation of some factors affecting the accuracy of classification by an artificial neural network[J]. Int. J. Remote Sens., 1997, 18: 799-810. DOI: 10.1080/014311697218764
    [8]
    ZHONG Y, ZHANG L. An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery[J]. IEEE Trans. Geosci. Remote Sens., 2011, 50: 894-909.
    [9]
    LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436.
    [10]
    DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision, 2014: 184-199.
    [11]
    Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Neural Information Processing Systems, 2014, DOI: 10.3156/JSOFT.29.5_177_2.
    [12]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
    [13]
    Lim B, SON S, KIM H. Enhanced deep residual networks for single image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 1(2): 3.
    [14]
    Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J/OL]. JMLR. org, 2015, DOI: 10.48550/arXiv.1502.03167.
    [15]
    HUI Bingwei, SONG Zhiyong, FAN Hongqi, et al. A dataset for infrared image dim-small aircraft target detection and tracking under ground /air background[DS/OL]. V1. Science Data Bank, 2019[2024-02-03]. https://doi.org/10.11922/sciencedb.902.DOI:10.11922/sciencedb.902" target="_blank">10.11922/sciencedb.902">https://doi.org/10.11922/sciencedb.902.DOI:10.11922/sciencedb.902.
  • Cited by

    Periodical cited type(1)

    1. 郭亮. 基于CGAN的近红外关联成像高分辨率重构. 智能计算机与应用. 2024(05): 144-149 .

    Other cited types(9)

Catalog

    Article views (239) PDF downloads (81) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return