Infrared Object-Tracking Algorithm Based on Dual-kernelized Collaborative Learning
-
摘要: 在红外目标跟踪中,如何鲁棒地跟踪上目标,对提升武器装备战斗力意义重大.本文在核相关目标跟踪算法(KCF)的基础上提出了一种有效的多特征协同学习核相关红外目标跟踪算法,该算法通过KCF模型将HOG(Histogram of Oriented Gradient)特征与Haar-like特征整合到一个框架中,解决了单一特征不足以表征目标外观变化,同时大大提升了红外目标跟踪的准确性与稳定性.同时,本文也提出了一种自适应学习因子策略,增强了模型的泛化能力.大量定性定量实验结果表明本文所提算法在重叠率准则(OR)和跟踪中心误差(CLE)准则上超过现有大多数算法,同时其跟踪速度也超过大多数算法.
-
-
期刊类型引用(3)
1. 骆焦煌,宋长龙. 基于改进CNN算法的视觉图像目标跟踪研究. 吉林大学学报(信息科学版). 2023(01): 165-173 . 百度学术
2. 左岑,杨秀杰,张捷,王璇. 基于轻量级金字塔密集残差网络的红外图像超分辨增强. 红外技术. 2021(03): 251-257 . 本站查看
3. 赵蔷,谢鹏. 基于多视角特征协同融合的红外导引头目标追踪算法. 重庆邮电大学学报(自然科学版). 2020(04): 639-647 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 137
- HTML全文浏览量: 11
- PDF下载量: 14
- 被引次数: 4