FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55.
Citation: FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55.

Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis

More Information
  • Received Date: March 07, 2020
  • Revised Date: November 21, 2020
  • Because of the effects of the background environment and data volume, the accuracy and efficiency of abnormal defects in traditional infrared images of insulators are generally low. In this study, a deep-learning anomaly diagnosis method is proposed. Based on the improved faster region-based convolutional neural network (R-CNN) method, a detection network is built to test different types of insulators. Results show that compared with the back propagation neural network and faster R-CNN methods, the proposed method can diagnose abnormal defects of insulators efficiently with a mean average precision of 90.2%. In addition, the diagnostic accuracy of single type Ⅰ and type Ⅴ insulators is higher than that of double type Ⅰ insulators. The results can provide a reference for insulator defect identification in transmission lines.
  • [1]
    陈俊佑, 金立军, 段绍辉, 等.基于Hu不变矩的红外图像电力设备识别[J].机电工程, 2013, 30(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201301003.htm

    CHEN Junyou, JIN Lijun, DUAN Shaohui, et al. Power equipment identification in infrared image based on Hu invariant moments[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201301003.htm
    [2]
    邹辉, 黄福珍.基于改进Fast-Match算法的电力设备红外图像多目标定位[J].中国电机工程学报, 2017, 37(2): 591-598. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201702027.htm

    ZOU Hui, HU Fuzhen. Multi-target localization for infrared images of electrical equipment based on improved fast-match algorithm[J]. Proceedings of the CSEE, 2017, 37(2): 591-598. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201702027.htm
    [3]
    魏秀深.解析深度学习:卷积神经网络原理与视觉实践[M].北京:电子工业出版社, 2018.

    WEI Xiushen. Analytic Deep Learning: Convolutional Neural Network Theory And Visual Practice[M]. Beijing: Electronic Industry Press, 2018.
    [4]
    罗舜.电力变压器套管将军帽发热故障的红外诊断分析[J].变压器, 2018, 55(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201801018.htm

    LUO Sun. Infrared diagnosis analysis of power transformer bushing coupler heating[J]. Transformer, 2018, 55(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201801018.htm
    [5]
    张杰, 付泉泳, 袁野.变压器局部放电带电检测技术应用研究[J].变压器, 2018, 55(8): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201808023.htm

    ZHANG Jie, FU Quanyong, YUAN Ye. Application research of electric detection technology of partial discharge for transformer[J]. Transformer, 2018, 55(8): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201808023.htm
    [6]
    梁天明, 袁焯锋, 石延辉.高压交流滤波电容器局部过热诱因分析及预防[J].电力电容器与无功补偿, 2015, 36(6): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DLDY201506011.htm

    LIANG Tianming, YUAN Daofeng, SHI Yanhui. Cause analysis and preventions on local overheating of high voltage ac filter capacitor[J]. Power Capacitor & Reactive Power Compensation, 2015, 36(6): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DLDY201506011.htm
    [7]
    潘臻, 安立.一起35 kV并联电容器组事故爆炸原因分析[J].电力电容器与无功补偿, 2015, 36(3): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DLDY201503005.htm

    PAN Zhen, AN Li. Analysis of 35 kV shunt capacitor banks explosion accident[J]. Power Capacitor & Reactive Power Compensation, 2015, 36(3): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DLDY201503005.htm
    [8]
    黄斌, 李昊, 徐姗姗, 等.一起35 kV并联电容器组爆炸原因分析及防范措施[J].电力电容器与无功补偿, 2018, 39(1): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DLDY201801005.htm

    HUANG Bin, LI Hao, XU Sansan, et al. Reason analysis and precautionary measures for a 35kv shunt capacitor bank explosion[J]. Power Capacitor & Reactive Power Compensation, 2018, 39(1): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DLDY201801005.htm
    [9]
    商俊平, 李储欣, 陈亮.基于视觉的绝缘子定位与自爆缺陷检测[J].电子测量与仪器学报, 2017, 31(6): 844-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201706007.htm

    SHANG Junping, LI Chuxin, CHEN Liang. Location and detectionfor self-explode insulator based on vision[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(6): 844-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201706007.htm
    [10]
    沈新平, 彭刚, 袁志强.基于霍夫变换和RANSAC算法的绝缘子定位方法[J].电子测量技术, 2017, 40(6): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201706031.htm

    SHEN Xinping, PENG Gang, YUAN Zhiqiang. Insulator location method based on hough transformation and RANSAC algorithm[J]. Electronic Measurement Technology, 2017, 40(6): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201706031.htm
    [11]
    李军锋, 王钦若, 李敏.结合深度学习和随机森林的电力设备图像识别[J].高电压技术, 2017, 43(11): 3705-3711. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201711028.htm

    LI Junfeng, WANG Qinruo, LI Min, et al. Electric Equipment Image Recognition Based on Deep Learning and Random Forest[J]. High Voltage Engineering, 2017, 43(11): 3705-3711. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201711028.htm
    [12]
    侯春萍, 章衡光, 张巍, 等.输电线路绝缘子自爆缺陷识别方法[J].电力系统及其自动化学报, 2019, 31(6): 1-6.

    HOU Chunping, ZHANG Hengguang, ZHANG Wei, et al. Recognition method for faults of insulators on transmission lines[C]//Proceedings of the CSU-EPSA, 2019, 31(6): 1-6.
    [13]
    左川.基于图像识别的输电线路绝缘子检测方法研究[D].北京: 华北电力大学, 2019.

    ZUO Chuang. Research on detection method of transmission line insulator based on image recognition[D]. Beijing: North China Electric Power University, 2019.
    [14]
    杨光俊.卷积神经网络在电力设备红外图像识别中的应用研究[D].广州: 华南理工大学, 2019.

    YANG Guangjun. Research on the application of convolutional neural network in infrared image recognition of power equipment[D]. Guangzhou: South CHINA University of Technology, 2019.
    [15]
    周可慧, 廖志伟, 肖异瑶, 等.基于改进CNN的电力设备红外图像分类模型构建研究[J].红外技术, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm

    ZHOU Kehui, LIAO Zhiwei, XIAO Yiyao, et al. Construction of infrared image classification model for power equipments based on improved CNN[J]. Infrared Technology, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm
    [16]
    许必宵.基于多尺度特征融合与上下文分析的目标检测技术研究[D].南京: 南京邮电大学, 2019.

    XU Bixiao. Research on object detection technology based on multi-scale feature fusion and context analysis[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.
    [17]
    张丹丹.基于航拍图像的绝缘子自爆位置的检测[D].成都: 西华大学, 2018.

    ZHANG Dandan. Detection of self-exploding position of insulator based on aerial image[D]. Chengdu: Xihua University, 2018.
    [18]
    王梦.基于绝缘子图像的缺陷检测方法研究[D].武汉: 华中科技大学, 2019.

    WANG Meng. A thesis submitted in partial fulfillment of the requirements[D]. Wuhan: Huazhong University of Science & Technology, 2019.
    [19]
    国家能源局.带电设备红外诊断应用规范: DL/T 664-2008[S].北京: 中国标准出版社, 2008.

    National Energy Administration. Application rules of infrared diagnosis for live electrical equipment: DL/T 664-2008[S]. Beijing: China Electric Power Press, 2008.
  • Related Articles

    [1]HUANG Jian-xia, XU Yu-xiong, ZHAO Zi-wen. Infrared Imaging Target Simulator Site in Situ Calibration Technology[J]. Infrared Technology , 2015, (12): 1032-1035.
    [2]LIN Jian-ying, YUAN Shui-ping. Design Research of Range Infrared Beacon Source with Remote Control[J]. Infrared Technology , 2014, (7): 562-566.
    [3]LIN Hong-Xue, ZHU Chen-Guang, JIANG Xiao-Nan, PENG Ru. Study on the Design of Low-temperature Infrared Decoy and Its Combustion Properties[J]. Infrared Technology , 2013, (10): 654-658.
    [4]Effects of Chip Location for Radiant Intensity Profiles of IREDs[J]. Infrared Technology , 2012, 34(7): 389-392. DOI: 10.3969/j.issn.1001-8891.2012.07.003
    [5]BA Shu-hong, JIAO Qing-jie. Effects of the Small Amount of Addtive on Radiation Intensity of Flash Pyrotechnics Composition[J]. Infrared Technology , 2008, 30(6): 365-367. DOI: 10.3969/j.issn.1001-8891.2008.06.015
    [6]LIU Jia-cong, LIU Zhan-chen, ZhANG Heng-xi, FANG Zhen-sheng. Analysis of IR Decoy Countermeasure to the Point Target Image Radiation Characteristics[J]. Infrared Technology , 2008, 30(1): 21-23. DOI: 10.3969/j.issn.1001-8891.2008.01.005
    [7]FANG Hong-bing, LIU Ming. The Review of Buried Soil Target Detection Technology Based on the Microwave Enhanced Infrared Imaging Technology[J]. Infrared Technology , 2007, 29(2): 115-117,123. DOI: 10.3969/j.issn.1001-8891.2007.02.014
    [8]FAN Bin, FENG Yun-Song. The Application of the Support Vector Machine in Infared Imaging Automatic Target Recognition[J]. Infrared Technology , 2007, 29(1): 38-41. DOI: 10.3969/j.issn.1001-8891.2007.01.010
    [9]WEI Hong, GE Jun, ZHOU Qi-bo. Multi-band Infrared Tracking and Measuring System[J]. Infrared Technology , 2006, 28(2): 74-76. DOI: 10.3969/j.issn.1001-8891.2006.02.003
    [10]The Target Discovery and Identification Probablity of Infrared Imaging System[J]. Infrared Technology , 2001, 23(3): 16-18,25. DOI: 10.3969/j.issn.1001-8891.2001.03.005
  • Cited by

    Periodical cited type(1)

    1. 花文波,赵城慷,高大友,花文涛. 一种温度补偿调焦红外系统丢包检测方法. 红外技术. 2024(09): 1081-1086 . 本站查看

    Other cited types(0)

Catalog

    Article views (558) PDF downloads (59) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return