Citation: | XIA Yan. Research on 3D Target Recognition Algorithm Based on Infrared Features[J]. Infrared Technology , 2022, 44(11): 1161-1166. |
[1] |
REN S, HE K, Girshick R, et al. Faster R-CNN: Real-time target detection in regional planning Network[J]. IEEE Pair Model Analysis and Machinery Information, 2017, 39(6): 1137-1149.
|
[2] |
GUO Y L, Sohel F, Bennamoun M, et al. A novel local surface feature for 3D object recognition under clutter and occlusion[J]. Information Sciences, 2015, 293: 196-213. DOI: 10.1016/j.ins.2014.09.015
|
[3] |
王果, 王成, 张振鑫, 等. 利用车载激光点云的分车带识别及单木分割方法[J]. 激光与红外, 2020, 50(11): 1333-1337. DOI: 10.3969/j.issn.1001-5078.2020.11.008
WANG Guo, WANG Cheng, ZHANG Zhenxin, et al. Single tree segmentation method of urban distributing belt based on vehicle-borne laser point cloud data[J]. Laser & Infrared, 2020, 50(11): 1333-1337. DOI: 10.3969/j.issn.1001-5078.2020.11.008
|
[4] |
胡海瑛, 惠振阳, 李娜. 基于多基元特征向量融合的机载LiDAR点云分类[J]. 中国激光, 2020, 47(8): 229-239. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202008029.htm
HU Haiying, HUI Zhenyang, LI Na. Airborne LiDAR point cloud classification based on multiple-entity eigenvector fusion[J]. Chinese Journal of Lasers, 2020, 47(8): 229-239. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202008029.htm
|
[5] |
Sochor J, Spaňhel J, Herout A. Boxcars: improving fine-grained recognition of vehicles using 3-d bounding boxes in traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(1): 97-108.
|
[6] |
Sochor J, Herout A, Havel J. BoxCars: 3D boxes as CNN input for improved fine-grained vehicle recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 3006-3015.
|
[7] |
Dubská M, Herout A, Juránek R, et al. Fully automatic roadside camera calibration for traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(3): 1162-1171.
|
[8] |
Dubská M, Herout A, Sochor J. Automatic camera calibration for traffic understanding[C]// Proceedings of the British Machine Vision Conference(BMVC), 2014: 1-12.
|
[9] |
GISEOK K, JAE- SOO C. Vision- Based vehicle detection and inter- vehicle distance estimation for driver alarm system[J]. Optical Review, 2012, 25(6): 388- 393.
|
[10] |
薛培林, 吴愿, 殷国栋, 等. 基于信息融合的城市自主车辆实时目标识别[J]. 机械工程学报, 2020, 56(12): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202012021.htm
XUE Peilin, WU Yuan, YIN Guodong, et al. Real-time target recognition for urban autonomous vehicles based on information fusion[J]. Journal of Mechanical Engineering, 2020, 56(12): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202012021.htm
|
[11] |
仝选悦, 吴冉, 杨新锋, 等. 红外与激光融合目标识别方法[J]. 红外与激光工程, 2018, 47(5): 158-165. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201805025.htm
TONG Xuanyue, WU Ran, YANG Xinfeng, et al. Fusion target recognition method of infrared and laser[J]. Infrared and Laser Engineering, 2018, 47(5): 158-165. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201805025.htm
|
[12] |
YAN Y, MAO Y, LI B. Second: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337/1-17.
|
[1] | YE Ye. A Deep Learning Method for Hyperspectral Detection of Heavy Metal Contaminants in Soil Based on Attention Mechanism[J]. Infrared Technology , 2025, 47(4): 453-458. |
[2] | DAI Yueming, YANG Lufeng, TONG Xiongmin. Real-time Section State Verification Method of Energy Management System Low Voltage Equipment Based on Infrared Image and Deep Learning[J]. Infrared Technology , 2024, 46(12): 1464-1470. |
[3] | CHEN Chaoyang, JIANG Yuanyuan. Infrared and Visible Image Fusion Based on Deep Image Decomposition[J]. Infrared Technology , 2024, 46(12): 1362-1370. |
[4] | BAI Hao, BAI Tingzhu. Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network[J]. Infrared Technology , 2024, 46(2): 176-182. |
[5] | DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128. |
[6] | FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943. |
[7] | ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293. |
[8] | ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986. |
[9] | FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55. |
[10] | YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433. |