ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293.
Citation: ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293.

Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors

More Information
  • Received Date: April 20, 2021
  • Revised Date: June 01, 2021
  • In recent years, action recognition has become a popular research topic in the field of computer vision. In contrast to research on video or images, this study proposes a two-stream convolution neural network method based on temperature data collected by a low-resolution infrared sensor. The spatial and temporal data were input into the two-stream convolution neural network in the form of collected temperature data, and the class scores of the spatial and temporal stream networks were late weighted and merged to obtain the final action category. The results indicate that the average accuracy of recognition can reach 98.2% on the manually collected dataset and 99% for bending, falling, and walking actions, indicating that the proposed net can recognize actions effectively.
  • [1]
    张艳梅, 马晓霞, 赫继梅, 等. 失能老人跌倒的影响因素及长期照护服务需求[J]. 中国老年学杂志, 2019, 39(17): 4355-4357. DOI: 10.3969/j.issn.1005-9202.2019.17.076

    ZHANG Yanmei, MA Xiaoxia, HE Jimei, et al. Influencing factors of falls and demand for long-term care services in the disabled elderly[J]. Chinese Journal of Gerontology, 2019, 39(17): 4355-4357. DOI: 10.3969/j.issn.1005-9202.2019.17.076
    [2]
    Hsieh Chungyang, LIN Weiyang. Video-based human action and hand gesture recognition by fusing factored matrices of dual tensors[J]. Multimedia Tools and Applications, 2017, 76(6): 7575-7594. DOI: 10.1007/s11042-016-3407-1
    [3]
    王玉坤, 高炜欣, 王征, 等. 基于加速度传感器的人体姿态实时识别[J]. 计算机工程与设计, 2016, 37(11): 3092-3096. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201611041.htm

    WANG Yukun, GAO Weixin, WANG Zheng, et al. Real-time human activity pattern recognition based on acceleration[J]. Computer Engineering and Design, 2016, 37(11): 3092-3096. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201611041.htm
    [4]
    杜英魁, 姚俊豪, 刘鑫, 等. 基于电阻式薄膜压力传感器组的人体坐姿感知终端[J]. 传感器与微系统, 2020, 39(1): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202001022.htm

    DU Yingkui, YAO Junhao, LIU Xin, et al. Human body sitting posture sensing terminal based on resistive thin film pressure sensor groups[J]. Transducer and Microsystem Technologies, 2020, 39(1): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202001022.htm
    [5]
    Kobiyama Yuta, ZHAO Qiangfu, Omomo Kazuk, et al. Analyzing correlation of resident activities based on infrared sensors[C]//IEEE International Conference on Awareness Science and Technology, 2015: 1-6.
    [6]
    Mashiyama S, HONG J, Ohtsuki T. Activity recognition using low resolution infrared array senso[C]//IEEE International Conference on Communications, 2015: 495-500.
    [7]
    杨任兵, 程文播, 钱庆, 等. 红外图像中基于多特征提取的跌倒检测算法研究[J]. 红外技术, 2017, 39(12): 1131-1138. http://hwjs.nvir.cn/article/id/hwjs201712011

    YANG Renbin, CHEN Wenbo, QIAN Qing, et al. Fall detection algorithm based on multi feature extraction in infrared image[J]. Infrared Technology, 2017, 39(12): 1131-1138. http://hwjs.nvir.cn/article/id/hwjs201712011
    [8]
    张昱彤, 翟旭平, 汪静. 一种基于低分辨红外传感器的动作识别方法[J]. 红外技术, 2022, 44(1): 47-53. http://hwjs.nvir.cn/article/id/5bca603e-2b3d-471c-a852-70344620d4bc

    ZHANG Yutong, ZHAI Xuping, WANG Jing. Activity recognition approach using a low-resolution infrared sensor[J]. Infrared Technology, 2022, 44(1): 47-53. http://hwjs.nvir.cn/article/id/5bca603e-2b3d-471c-a852-70344620d4bc
    [9]
    Akula A, Shah A K, Ghosh R. Deep learning approach for human action recognition in infrared images[J]. Cognitive Systems Research, 2018, 50(8): 146-154.
    [10]
    王召军, 许志猛. 基于低分辨率红外阵列传感器的人体身份和动作识别[J]. 电气技术, 2019, 20(11): 6-10, 26. DOI: 10.3969/j.issn.1673-3800.2019.11.004

    WANG Zhaojun, XU Zhimeng. Human identity and motion recognition based on low resolution infrared array sensor[J]. Electrical Engineering, 2019, 20(11): 6-10, 26. DOI: 10.3969/j.issn.1673-3800.2019.11.004
    [11]
    Takayuki Kawashima, Yasutomo Kawanishi, IchiroIde Hiroshi Murase. Action recognition from extremely low-resolution thermal image sequence[C]//2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017: 1-6, Doi: 10.1109/AVSS.2017.8078497.
    [12]
    FAN Xiuyi, ZHANG Huiguo, LEUNG Cyril, et al. Robust unobtrusive fall detection using infrared array sensor[J]. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2017, 5(4): 194-199.
    [13]
    Polla F, Laurent H, Emile B. Action recognition from low-resolution infrared sensor for indoor use: a comparative study between deep learning and classical approaches[C]//2019 20th IEEE International Conference on Mobile Data Management (MDM), 2019: 409-414.
    [14]
    Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos[J]. Advances in Neural Information Processing Systems, 2014, 1(4): 568-576.
    [15]
    Feichtenhofer C, Pinz A, Zisserman A. Convolutional two-stream network fusion for video action recognition[C]//IEEE International Conference on Computer Vision and Pattern Recognition CVPR, 2016: 1933-1941.
    [16]
    Trofimova A A, Masciadri A, Veronese F, et al. Salice, indoor human detection based on thermal array sensor data and adaptive background estimation[J]. Journal of Computer and Communications, 2017, 5(4): 16-28. DOI: 10.4236/jcc.2017.54002
    [17]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//ICLR, 2015: 1-14.
    [18]
    WANG L, ZANG J, ZHANG Q, et al. Action recognition by an attention-aware temporal weighted convolutional neural network[J]. Sensors, 2018, 18(7): 1979. DOI: 10.3390/s18071979
    [19]
    HE K, ZHANG X, Ren S, et al. Deep residual learning for image recognition[C]//CVPR, 2016: 770-778. Doi: 10.1109/CVPR.2016.90.
  • Cited by

    Periodical cited type(11)

    1. 冯青文,王丹辉,张德贤. LSTM-SVM算法下软件潜在溢出漏洞检测仿真. 计算机仿真. 2024(02): 487-491 .
    2. 姚迎乐,冯乃勤. 广义神经网络在数据流量预测中的应用仿真. 计算机仿真. 2024(04): 382-386 .
    3. 赵莎莎,袁葆,安亚刚,朱雅魁,苏欣. 智能电网需求侧用户参与度研究模型. 电网与清洁能源. 2024(03): 60-66 .
    4. 郑奕捷,李翠玉,郑祖芳. RNN循环神经网络的服务机器人交互手势辨识. 机械设计与制造. 2024(04): 282-285 .
    5. 聂萌瑶,刘鑫. 正则化极限学习下细粒度网络入侵检测仿真. 计算机仿真. 2024(05): 419-423 .
    6. 涂剑峰,李芳丽. 冒充性攻击下无线传感节点信息数据安全推荐算法. 传感技术学报. 2024(08): 1434-1440 .
    7. 周德,张霖,何小宇,唐伟晔. 基于光谱的天然气组分定量分析方法研究. 自动化与仪表. 2023(06): 115-119 .
    8. 翁渊瀚,李南. 基于时间序列模型的文本数据压缩存储算法. 吉林大学学报(工学版). 2023(07): 2109-2114 .
    9. 王尚文. 基于深度学习的高压输电线双极短路故障检测. 自动化与仪表. 2023(08): 69-73+93 .
    10. 盛丽华,沈晖. 多源异构数据边缘融合信息化监测仿真. 计算机仿真. 2023(09): 477-481 .
    11. 薛峪峰,马晓琴,罗红郊,田光欣. 海量冗余数据冲击下网络入侵检测方法. 电子设计工程. 2023(22): 167-170+175 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return