ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986.
Citation: ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986.

The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition

More Information
  • Received Date: March 07, 2020
  • Revised Date: April 26, 2020
  • With lower underwater vehicle noise levels, the infrared imaging characteristics of underwater vehicle wake have become one of the main detectable sources. Using the infrared characteristics of underwater vehicle wakes to detect underwater vehicle traces has gradually developed into a popular detection method. Because of the low efficiency and inaccuracy of artificial wake characteristics identification, the adopted artificial intelligence deep learning method can be greatly improved. In this study, the infrared feature recognition of underwater vehicle wake is the primary focus. A sample set of mixed classes was made by image classification. The training effect of different pre-training networks was compared using migration learning. The influence of the internal parameters of the pre-training networks on the training effect of the wake was discussed. Finally, in the small sample set of 45 two kinds of wake, the recognition accuracy of the network after pre-training increased by 21.43%, the false detection rate decreased by 2.14%, and the positioning accuracy of the image with infrared characteristics was 18.18% higher than that of the visible image. This pre-training test has a certain application potential for future research on wake detection combined with convolution neural network recognition.
  • [1]
    王雨农. 基于视觉注意机制的神经网络模型研究及应用[D]. 合肥: 中国科学技术大学, 2017.

    WANG Yunong. Research on Visual Attention Based Neural Network Model and its Application[D]. Hefei: University of Science and Technology of China, 2017.
    [2]
    Rumelhart D, Mcclelland J. Learning internal representations by error propagation[M]//Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Massachusetts: MIT Press, 1986: 318-362.
    [3]
    尹勰, 闫磊. 基于深度卷积神经网络的图像目标检测[J]. 工业控制计算机, 2017, 30(4): 96-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GYKJ201704040.htm

    YIN Xie, YAN Lei. Image target detection based on deep convolutional neural network [J]. Industrial Control Computer, 2017, 30(4): 96-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GYKJ201704040.htm
    [4]
    Razavian A S, Azizpour H, Sullivan J, et al. CNN features off-the-shelf: an astounding baseline for recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014: 512-519.
    [5]
    Zeiler M D, Fergus R. Visualizing and Understanding Convolutional Networks[M]//Computer Vision-ECCV, Springer International Publishing, 2014.
    [6]
    胡炎, 单子力, 高峰. 基于Faster-RCNN和多分辨率SAR的海上舰船目标检测[J]. 无线电工程, 2018, 48(2): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-WXDG201802005.htm

    HU Yan, SHAN Zili, GAO Feng. Ship target detection based on faster-RCNN and multi-resolution SAR[J]. Radio Engineering, 2018, 48(2): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-WXDG201802005.htm
    [7]
    李新. 基于红外热像技术连铸板坯裂纹预报方法研究[D]. 唐山: 华北理工大学, 2015.

    LI Xin. Research on Crack Prediction Method of Continuous Casting Slab Based on Infrared Thermography[D]. Tangshan : North China University of Technology, 2015.
    [8]
    张健, 杨立, 袁江涛. 水下航行器热尾流试验研究[J]. 实验流体力学, 2008, 22(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200803002.htm

    ZHANG Jian, YANG Li, YUAN Jiangtao. Experimental study on thermal wake of underwater vehicles[J]. Experimental Fluid Mechanics, 2008, 22(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200803002.htm
    [9]
    贺林. 水喷淋消声器设计与实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.

    HE Lin. Design and Experimental Study of Water Spray Muffler[D]. Harbin : Harbin Engineering University, 2006.
    [10]
    伍伟明. 基于Faster R-CNN的目标检测算法的研究[D]. 广州: 华南理工大学, 2018.

    WU Weiming. Research on Target Detection Algorithm Based on Faster R-CNN[D]. Guangzhou : South China University of Technology, 2018.
    [11]
    刘万军, 梁雪剑, 曲海成. 自适应增强卷积神经网络图像识别[J]. 中国图象图形学报, 2019, 22(12): 1723-1736. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201712008.htm

    LIU Wanjun, LIANG Xuejian, QU Haicheng. Adaptive enhanced convolutional neural network image recognition[J]. Chinese Journal of Image Graphics, 2019, 22(12): 1723-1736. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201712008.htm
    [12]
    Lecun Y, Boser B, Denker J, et al. Back propagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. DOI: 10.1162/neco.1989.1.4.541
    [13]
    王红霞, 周家奇, 辜承昊, 等. 用于图像分类的卷积神经网络中激活函数的设计[J]. 浙江大学学报: 工学版, 2019, 53(7): 1363-1373. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201907016.htm

    WANG Hongxia, ZHOU Jiaqi, GU Chenghao, et al. Design of activation functions in convolutional neural networks for image classification[J]. Journal of Zhejiang University: Engineering Edition, 2019, 53(7): 1363-1373. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201907016.htm
  • Related Articles

    [1]ZHOU Shikai, LI Zhengqiang, YAO Qian, WU Wenfei, XIE Yanqing, FAN Cheng. A Simplified Radiative Transfer Calculation Scheme for Transmittance in Satellite Thermal Infrared Remote Sensing[J]. Infrared Technology , 2025, 47(3): 272-280.
    [2]TIAN Hao, HU Haifei, CAI Sheng, WANG Jiulong, XU Wei. Detectability Analysis of Low Earth Orbital Infrared Detectors for Near Space Hypersonic Targets[J]. Infrared Technology , 2024, 46(6): 617-624.
    [3]WANG Yi, WANG Hao, WEI Ziyu, WANG Xue. Test of Infrared Radiation Characteristic for Aero-engines Based on Spectral Radiometer[J]. Infrared Technology , 2023, 45(3): 292-297.
    [4]SONG Minmin, WANG Shuang, LYU Tao, YUAN Yujian. A Method for Infrared Dim Small Target Detection in Complex Scenes of Sky and Ground[J]. Infrared Technology , 2018, 40(10): 996-1001.
    [5]ZHAO Zhijun, XU Fangyu, WEI Chaoqun, YANG Kun. Study on Measurement Method for Total Infrared Atmospheric Transmittance[J]. Infrared Technology , 2018, 40(7): 718-722.
    [6]YANG Hui, ZHANG Baohui, SHA Tao, WANG Dongjing, WANG Runyu. Detection of Small Infrared Moving Targets Under Ground-sky Background[J]. Infrared Technology , 2018, 40(5): 462-467.
    [7]KANG Lizhu, ZHAO Jinsong, ZHOU Qian, NI Kai, TANG Han, ZHAO Qiang, TAO Liang. Research on Infrared Signature for Remotely Detection from the Nose of Aircrafts[J]. Infrared Technology , 2017, 39(4): 365-371.
    [8]CHEN Fang-fang, GENG Rui, LYU Yong. Research on the Transmittance Model of Laser Infrared Atmospheric Transmission[J]. Infrared Technology , 2015, (6): 496-501.
    [9]ZHOU Xia, CHEN Qian, QIAN Wei-xian, GU Guo-hua, XU Fu-yuan. Research on the Algorithm of Dim and Small Targets Detection on the Ground[J]. Infrared Technology , 2013, (6): 334-338.
    [10]ZHOU Guo-hui, LIU Xiang-wei, XU ji-wei. A Math Model of Calculate the Atmospheric Transmittance Of Infrared Radiation[J]. Infrared Technology , 2008, 30(6): 331-334. DOI: 10.3969/j.issn.1001-8891.2008.06.006
  • Cited by

    Periodical cited type(2)

    1. 高于山,邓瑛,张菁. 临近空间光学载荷设计关键指标与技术综述. 空天技术. 2023(03): 88-93 .
    2. 马俊,朱猛,王才喜,史文杰. 临近空间光电探测技术与发展展望. 空天技术. 2022(02): 85-96 .

    Other cited types(2)

Catalog

    Article views (133) PDF downloads (28) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return