Citation: | FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943. |
[1] |
张旭, 魏娟, 赵冬梅, 等. 电网故障诊断的研究历程及展望[J]. 电网技术, 2013, 37(10): 2745-2553. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201310011.htm
ZHANG Xu, WEI Juan, ZHAO Dongmei, et al. Research history and prospect of power grid fault diagnosis [J]. Power Grid Technology, 2013, 37(10): 2745-2553. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201310011.htm
|
[2] |
刘晓康, 万曦, 涂文超, 等. 基于红外可见光图像配准的电力设备分割算法[J]. 计算机与现代化, 2020(8): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202008005.htm
LIU Xiaokang, WAN Xi, TU Wenchao, et al. Power equipment segmentation algorithm based on infrared and visible image registration[J]. Computer and modernization, 2020(8): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202008005.htm
|
[3] |
王鲲鹏, 徐一丹, 于起峰. 红外与可见光图像配准方法分类及现状[J]. 红外技术, 2009, 31(5): 270-274. DOI: 10.3969/j.issn.1001-8891.2009.05.007
WANG Kunpeng, XU Yidan, YU Qifeng. Classification and status quo of infrared and visible image registration methods[J]. Infrared Technology, 2009, 31(5): 270-274. DOI: 10.3969/j.issn.1001-8891.2009.05.007
|
[4] |
赵洪山, 张则言. 基于文化狼群算法的电力设备红外和可见光图像配准[J]. 光学学报, 2020, 40(16): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202016007.htm
ZHAO Hongshan, ZHANG Zeyan Infrared and visible image registration of power equipment based on cultural wolf swarm algorithm[J]. Acta Optica Sinica, 2020, 40(16): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202016007.htm
|
[5] |
MA J Y, JIANG X Y, FAN A X, et al. Image matching from handcrafled to deep features: A survey [J]. International Journal of Computer Vision, 2021, 129(1): 23-79. DOI: 10.1007/s11263-020-01359-2
|
[6] |
徐全飞, 冯旗. 基于SURF和矩阵乘法的超大规模遥感图像亚像素配准算法研究[J]. 红外技术, 2017, 39(1): 44-52. http://hwjs.nvir.cn/article/id/hwjs201701009
XU Quanfei, FENG Qi Research on subpixel registration algorithm of super large scale remote sensing image based on surf and matrix multiplication[J]. Infrared Technology, 2017, 39(1): 44-52. http://hwjs.nvir.cn/article/id/hwjs201701009
|
[7] |
WU G R, KIM M, WANG Q, GAO Y Z, et al. Unsupervised deep feature learning for deformable registration of MR brain image[C]//Proceedings of the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2013: 649-656.
|
[8] |
CHENG X, ZHANG L, ZHENG Y F. Deep similarity learning for multimodal medical images[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6(3): 248-252.
|
[9] |
Simonovsky M, Gulierrez-Becker B, Mateus D, et al. A deep metric for multimodal registration[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer Assisted Intervention, 2016: 10-18.
|
[10] |
Kabus S, Netsch T, Fischer B, et al. B-spline registration of 3D images with Levenberg-Marquardt optimization[C]//Proceedings of SPIE, Medical Imaging, Image Processing, 2004, 5370: 304-313.
|
[11] |
TANG L S, Hamarneh G, Celler A. Co-registration of bone CT and SPECT images using mutual information[C]//IEEE International Symposium on Signal Processing and Information Technology, 2006: 116-121.
|
[12] |
MIAO S, WANG Z J, LIAO R. A CNN regression approach for real-time 2D/3D registration[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1352-1363.
|
[13] |
HAN Xufeng, LEUNG T, JIA Y, et al. MatchNet: Unifying feature and metric learning for patch-based matching[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 3279-3286, Doi: 10.1109/CVPR.2015.7298948.
|
[14] |
Krebs J, Mansi T, Delingette H, et al. Robust non-rigid registration through agent-based action learning[C]// Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017: 344-35.
|
[15] |
Dosovitskiy A, Fischer P, Ilg E, et al. FlowNet: learning optical flow with convolutional networks[C]// Proceedings of IEEE International Conference on Computer Vision, 2015: 2758-2766.
|
[16] |
LI H W, WANG B H, LI L. Research on the infrared and visible power-equipment image fusion for inspection robots[C]//2010 1st International Conference on Applied Robotics for the Power Industry, 2010: 1-5.
|
[17] |
李寒, 王库, 刘韶军. 基于灰度冗余和SURF算法的电气设备红外和可见光图像配准[J]. 电力系统保护与控制, 2011, 39(11): 111-115, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201111021.htm
LI Han, WANG Ku, LIU Shaojun. Infrared and visible image registration of electrical equipment based on gray redundancy and surf algorithm[J]. Power System Protection and Control, 2011, 39(11): 111-115, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201111021.htm
|
[18] |
姜骞, 刘亚东, 方健, 等. 基于轮廓特征的电力设备红外和可见光图像配准方法[J]. 仪器仪表学报, 2020, 41(11): 252-260. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202011028.htm
JIANG Qian, LIU Yadong, FANG Jian, et al. Infrared and visible image registration method of power equipment based on contour feature[J]. Journal of Instrumentation, 2020, 41(11): 252-260. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202011028.htm
|
[19] |
李云红, 罗雪敏, 苏雪平, 等. 基于改进CSS的电力设备红外与可见光图像配准[J]. 激光与光电子学进展, 2021, 11(24): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202212014.htm
LI Yunhong, LUO Xuemin, SU Xueping, et al. Infrared and visible image registration of power equipment based on improved CSS [J]. Progress in Laser and Optoelectronics, 2021, 11(24): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202212014.htm
|
[20] |
Taylor S, Drummond T. Binary histogrammed intensity patches for efficient and robust matching[J]. International Journal of Computer Vision, 2011, 94(2): 241-265.
|
[21] |
MA W, ZHANG J, WU Y, et al. A novel two-step registration method for remote sensing images based on deep and local features[J]. IEEE Trans Geosci Remote Sen, 2019, 57: 4834-4843.
|
[22] |
YE F, SU Y, XIAO H, et al. Remote sensing image registration using convolutional neural network features[J]. IEEE Geosci. Remote Sens Lett. , 2018, 15: 232-236.
|
[23] |
LIU X L, JIANG D S, WANG M N, et al. Image synthesis based multi-modal image registration framework by using deep fully convolutional networks[J]. Medical & Biological Engineering & Computing, 2019, 57(5): 1037-1048.
|
[24] |
周微硕, 安博文, 赵明, 等. 基于几何不变性和局部相似特征的异源遥感图像配准算法[J]. 红外技术, 2019, 41(6): 561-571. http://hwjs.nvir.cn/article/id/hwjs201906012
ZHOU Weishuo, AN Bowen, ZHAO Ming, et al A registration algorithm for heterogeneous remote sensing images based on geometric invariance and local similarity [J]. Infrared Technology, 2019, 41(6): 561-571. http://hwjs.nvir.cn/article/id/hwjs201906012
|
[25] |
Salakhutdinov R, Hinton G E. Deep Boltzmann machines[C]// Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, 2009: 448-455.
|
[26] |
杨琼楠, 马天力, 杨聪锟, 等. 基于优化采样的RANSAC图像匹配算法[J]. 激光与光电子学进展, 2020, 57(10): 259-266. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202010029.htm
YANG Qiongnan, MA Tianli, YANG Congkun, et al. RANSAC image matching algorithm based on optimized sampling[J]. Progress in Laser and Optoelectronics, 2020, 57(10): 259-266. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202010029.htm
|
[27] |
李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
LI Hang. Statistical Learning Method[M]. Beijing: Tsinghua University Press, 2012.
|
[28] |
朱英宏, 李俊山, 汤雨. 基于CSS角点提取的红外与可见光图像匹配算法[J]. 系统工程与电子技术, 2011, 33(11): 2540-2545. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201111037.htm
ZHU Yinghong, LI Junshan, TANG Yu. Infrared and visible image matching algorithm based on CSS corner extraction[J]. Systems Engineering and Electronic Technology, 2011, 33(11): 2540-2545. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201111037.htm
|
[29] |
岳国华, 邢晓利. 基于卷积神经网络和校正网络相结合的遥感图像配准方法研究[J]. 计算机应用与软件, 2021, 38(11): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202111031.htm
YUE Guohua, XING Xiaoli. Research on remote sensing image registration method based on convolution neural network and correction network[J]. Computer Applications and Software, 2021, 38(11): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202111031.htm
|
[30] |
FU J, LI W S, XU L M. DSAGAN: A generative adversarial network based on dual-stream attention mechanism for anatomical and functional image fusion [J]. Information Sciences, 2021, 576: 484-506.
|
[31] |
王少杰, 武文波, 徐其志. VGG与DoG结合的光学遥感影像精确配准方法[J]. 航天返回与遥感, 2021, 42(5): 76-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202105010.htm
WANG Shaojie, WU Wenbo, XU Qizhi. An accurate registration method of optical remote sensing images based on VGG and DoG[J]. Aerospace Return and Remote Sensing, 2021, 42(5): 76-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202105010.htm
|
[1] | CHEN Jia, YU Chengbo, WANG Shibing, JIANG Qichao, HE Xin, ZHANG Wei. IR Image Classification and Detection of Power Equipment Based on CBAM Improvement[J]. Infrared Technology , 2025, 47(1): 72-80. |
[2] | WANG Xiaodong, LYU Tongfa, BAO Mingzheng, HE Yongchun, XIN Peng, WU Tao. Infrared Image Recognition Method for Power Equipment Based on Improved YOLO v5[J]. Infrared Technology , 2024, 46(6): 722-727. |
[3] | HUANG Zhihong, XIAO Jian, XU Xianyong, ZHANG Hui. Spectral Residual Transformation for Thermal Defect Detection of Power Equipment[J]. Infrared Technology , 2023, 45(8): 884-889. |
[4] | LIU Yunfeng, ZHAO Hongshan, YANG Jinbiao, HAN Jinfeng, LIU Bingcong. Super Resolution Method for Power Equipment Infrared Imaging Based on Gradient Norm-ratio Prior[J]. Infrared Technology , 2023, 45(1): 40-48. |
[5] | LIANG Jian, HUANG Zhihong, ZHANG Keren. Multi-scale Guided Filter and Decision Fusion for Thermal Fault Diagnosis of Power Equipment[J]. Infrared Technology , 2022, 44(12): 1344-1350. |
[6] | HUANG Zhihong, HONG Feng, HUANG Wei. Shape Adaptation Low Rank Representation for Thermal Fault Diagnosis of Power Equipments[J]. Infrared Technology , 2022, 44(8): 870-874. |
[7] | SU Haifeng, ZHAO Yan, WU Zejun, CHENG Bo, LYU Linfei. Refined Infrared Object Detection Model for Power Equipment Based on Improved RetinaNet[J]. Infrared Technology , 2021, 43(11): 1104-1111. |
[8] | HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915. |
[9] | WANG Xiaofang, MAO Huamin. Infrared Image Segmentation Method for Power Equipment in Complex Background[J]. Infrared Technology , 2019, 41(12): 1111-1116. |
[10] | CHEN Jishun, XIAO Lijun, WAN Xinyu, MAI Ruijie, QIN Huiping, LI Lei. Research on Enhancement and Segmentation of Power Equipment Infrared Heat Map in Complex Environment[J]. Infrared Technology , 2018, 40(11): 1112-1118. |