Citation: | HUANG Zhihong, HONG Feng, HUANG Wei. Shape Adaptation Low Rank Representation for Thermal Fault Diagnosis of Power Equipments[J]. Infrared Technology , 2022, 44(8): 870-874. |
[1] |
刘嵘, 刘辉, 贾然, 等. 一种智能型电网设备红外诊断系统的设计[J]. 红外技术, 2020, 42(12): 198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69
LIU Rong, LIU Hui, JIA Ran, et al. Design of intelligent infrared di-agnosis system for power grid equipment[J]. Infrared Technology, 2020, 42(12): 1198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69
|
[2] |
张文峰, 彭向阳, 陈锐民, 等. 基于无人机红外视频的输电线路发热缺陷智能诊断技术[J]. 电网技术, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm
ZHANG Wenfeng, PENG Xiangyang, CHEN Ruiming, et al. Intelligent diagnostic techniques of abnormal heat defect in transmission lines based on unmanned helicopter infrared video[J]. Power System Technology, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm
|
[3] |
王淼, 杜伟, 孙鸿博, 等. 基于红外图像识别的输电线路故障诊断方法[J]. 红外技术, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015
WANG Miao, DU Wei, SUN Hongbo, et al. Transmission line fault diagnosis method based on infrared image recognition[J]. Infrared Technology, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015
|
[4] |
胡洛娜, 彭云竹, 石林鑫. 核猫群红外图像异常检测方法在电力智能巡检中的应用[J]. 红外技术, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013
HU Luona, PENG Yunzhu, SHI Linxin. Anomaly detection method of infrared images based on kernel cat swarm optimization clustering with application in intelligent electrical power inspection[J]. Infrared Technology, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013
|
[5] |
魏钢, 冯中正, 唐跃林, 等. 输变电设备红外故障诊断技术与试验研究[J]. 电气技术, 2013, 14(6): 75-78. DOI: 10.3969/j.issn.1673-3800.2013.06.020
WEI Gang, FENG Zhongzheng, TANG Yuelin, et al. The infrared diagnostic technology of power transmission devices and experimen-tal study[J]. Electrical Technology, 2013, 14(6): 75-78. DOI: 10.3969/j.issn.1673-3800.2013.06.020
|
[6] |
李鑫, 崔昊杨, 霍思佳, 等. 基于粒子群优化法的Niblack电力设备红外图像分割[J]. 红外技术, 2018, 40(8): 780-785. http://hwjs.nvir.cn/article/id/hwjs201808010
LI Xin, CUI Wuyang, HUO Siyang. Niblack's method for infrared image segmentation of electrical equipment improved by particle swarm optimization[J]. Infrared Technology, 2018, 40(8): 780-785. http://hwjs.nvir.cn/article/id/hwjs201808010
|
[7] |
林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2017, 45(16): 87-94. DOI: 10.7667/j.issn.1674-3415.2015.16.013
LIN Ying, GUO Zhihong, CHEN Yufeng. Convolutional-recursive network based current transformer infrared fault image diagnosis[J]. Power System Protection and Control, 2015, 45(16): 87-94. DOI: 10.7667/j.issn.1674-3415.2015.16.013
|
[8] |
黄志鸿, 吴晟, 肖剑, 等. 基于引导滤波的电力设备热故障诊断方法研究[J]. 红外技术, 2021, 43(9): 910-915. http://hwjs.nvir.cn/article/id/cb2a71f1-cd7c-4e76-977b-b6f7472b905d
HUANG Zhihong, WU Sheng, XIAO Jian, et al. Thermal fault dagnosis of power equipments based on guided filter[J]. Infrared Technology, 2021, 43(9): 910-915. http://hwjs.nvir.cn/article/id/cb2a71f1-cd7c-4e76-977b-b6f7472b905d
|
[9] |
常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网[J]. 自动化学报, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm
CHANG Liang, DENG Xiaoming, ZHOU Mingquan, et al. Convolu-tional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm
|
[10] |
魏东, 龚庆武, 来文青, 等. 基于卷积神经网络的输电线路区内外故障判断及故障选相方法研究[J]. 中国电机工程学报, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm
WEI Dong, LONG Qinwu, LAI Wenqing, et al. Research on internal and external fault diagnosis and fault-selection of transmission line based on convolutional neural network[J]. Proceedings of the CSEE, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm
|
[11] |
周可慧, 廖志伟, 肖异瑶, 等. 基于改进CNN的电力设备红外图像分类模型构建研究[J]. 红外技术, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm
ZHOU Kehui, LIAO Zhiwei, XIAO Yiyao, et al. Construction of infrared image classification model for power equipments based on improved CNN[J]. Infrared Technology, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm
|
[12] |
LIU M, Tuzel O, Ramalingam S, et al. Entropy rate superpixel segmentation[C]//Pattern Recognit., 2011: 2097-2104.
|
[13] |
YUAN X, YANG J. Sparse and low-rank matrix decomposition via alternating direction methods[J]. Pacific. J. Optim, 1990, 9(1): 1760-1770.
|
[14] |
Reed I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustic Speech Signal Processing, 1990, 38(10): 1760-1770. DOI: 10.1109/29.60107
|
[15] |
KANG X, ZHANG X, LI S, et al. Hyperspectral anomaly detection with attribute and edge-preserving filters[J]. IEEE Trans. Geosci. Remote Sens. , 2017, 55(10): 5600-5611. DOI: 10.1109/TGRS.2017.2710145
|
[16] |
XU Y, WU Z, LI J, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Trans. Geosci Remote Sens. , 2016, 54(4): 1990 DOI: 10.1109/TGRS.2015.2493201
|
[17] |
蒋昀宸, 樊绍胜, 陈骏星溆. 带电作业智能新技术及其应用现状[J]. 湖南电力, 2018, 38(5): 1-4. DOI: 10.3969/j.issn.1008-0198.2018.05.001
JIANG Yunchen, FAN Zhaosheng, CHEN Junxingxu. Smart new-technologies and applications for live work[J]. Hunan Electric Power, 2018, 38(5): 1-4. DOI: 10.3969/j.issn.1008-0198.2018.05.001
|
[1] | WU Xiaojun, YU Xianzhe, WANG Peng, ZHAO He, LI Tiancheng. Superpixel-Based Improved Fuzzy C-Means Clustering for Electrical Equipment Infrared Image Segmentation[J]. Infrared Technology , 2025, 47(2): 235-242. |
[2] | LONG Zhiliang, DENG Yueming, WANG Runmin, DONG Jun. Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation[J]. Infrared Technology , 2023, 45(7): 705-713. |
[3] | LIANG Jian, HUANG Zhihong, ZHANG Keren. Multi-scale Guided Filter and Decision Fusion for Thermal Fault Diagnosis of Power Equipment[J]. Infrared Technology , 2022, 44(12): 1344-1350. |
[4] | SUN Bin, ZHUGE Wuwei, GAO Yunxiang, WANG Zixuan. Infrared and Visible Image Fusion Based on Latent Low-Rank Representation[J]. Infrared Technology , 2022, 44(8): 853-862. |
[5] | DING Jian, GAO Qingwei, LU Yixiang, SUN Dong. Infrared and Visible Image Fusion Algorithm Based on the Decomposition of Robust Principal Component Analysis and Latent Low Rank Representation[J]. Infrared Technology , 2022, 44(1): 1-8. |
[6] | HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915. |
[7] | ZHAN Wei, MA Xinxing, XU Zijian. IR Blind Pixels Detection and Correction Based on Superpixel Segmentation[J]. Infrared Technology , 2018, 40(11): 1085-1090. |
[8] | LIU Hui, SHI Xiaolong. Improved GrabCut Segmentation Based on Salience and Superpixels[J]. Infrared Technology , 2018, 40(1): 55-61. |
[9] | XUE Feng, ZHU Qiang, LIN Nan. Single Frame Infrared-image Super-resolution Algorithm Based on Low-rank Matrix Recovery and Neighbor Embedding[J]. Infrared Technology , 2017, 39(11): 1032-1037. |
[10] | SHEN Zhen-yi, SUN Shao-yuan, HOU Jun-jie, ZHAO Hai-tao. The Vehicle Infrared Image Colorization Algorithm Based on Random Forest and Superpixel Segmentation[J]. Infrared Technology , 2015, (12): 1041-1046. |