HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915.
Citation: HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915.

Thermal Fault Diagnosis of Power Equipments Based on Guided Filter

More Information
  • Received Date: December 29, 2020
  • Revised Date: March 10, 2021
  • Thermal fault is a common fault type in the power equipment. This paper introduces a thermal fault diagnosis method for the power equipment by employing guided filter. The proposed method consists of two main steps. First, according to the temperature difference between the thermal fault area and the background in infrared images, the Mahalanobis distance between the fault area and the background is estimated, and the initial thermal fault diagnosis results can be generated. Then, guided filter is used to improve the diagnosis performance, by utilizing the spatial correlation between adjacent pixels fully utilized. Experimental results demonstrate that the proposed diagnosis method has a better diagnosis performance than the current state-of-the-art detectors.
  • [1]
    刘嵘, 刘辉, 贾然, 等. 一种智能型电网设备红外诊断系统的设计[J]. 红外技术, 2020, 42(12): 1198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69

    LIU Rong, LIU Hui, JIA Ran, et al. Design of intelligent infrared diagnosis system for power grid equipment[J]. Infrared Technology, 2020, 42(12): 1198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69
    [2]
    张文峰, 彭向阳, 陈锐民, 等. 基于无人机红外视频的输电线路发热缺陷智能诊断技术[J]. 电网技术, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm

    ZHANG Wenfeng, PENG Xiangyang, CHEN Ruiming, et al. Intelligent diagnostic techniques of abnormal heat defect in transmission lines based on unmanned helicopter infrared video[J]. Power System Technology, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm
    [3]
    蒋昀宸, 樊绍胜, 陈骏星溆. 带电作业智能新技术及其应用现状[J]. 湖南电力, 2018, 38(5): 1-4. DOI: 10.3969/j.issn.1008-0198.2018.05.001

    JIANG Yunchen, FAN Zhaosheng, CHEN Junxingxu. Smart newtechnologies and applications for live work[J]. Hunan Electric Power, 2018, 38(5): 1-4. DOI: 10.3969/j.issn.1008-0198.2018.05.001
    [4]
    康龙. 基于红外图像处理的变电站设备故障诊断[D]. 北京: 华北电力大学, 2016.

    KANG Long. Fault diagnosis of substation equipment based on infrared image processing[D]. Beijing: North China Electric Power University, 2016.
    [5]
    王淼, 杜伟, 孙鸿博, 等. 基于红外图像识别的输电线路故障诊断方法[J]. 红外技术, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015

    WANG Miao, DU Wei, SUN Hongbo, et al. Transmission line fault diagnosis method based on infrared image recognition[J]. Infrared Technology, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015
    [6]
    胡洛娜, 彭云竹, 石林鑫. 核猫群红外图像异常检测方法在电力智能巡检中的应用[J]. 红外技术, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013

    HU Luona, PENG Yunzhu, SHI Linxin. Anomaly detection method of infrared images based on kernel cat swarm optimization clustering with application in intelligent electrical power inspection[J]. Infrared Technology, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013
    [7]
    魏钢, 冯中正, 唐跃林, 等. 输变电设备红外故障诊断技术与试验研究[J]. 电气技术, 2013, 14(6): 75-78. DOI: 10.3969/j.issn.1673-3800.2013.06.020

    WEI Gang, FENG Zhongzheng, TANG Yuelin, et al. The infrared diagnostic technology of power transmission devices and experimental study[J]. Electrical Technology, 2013, 14(6): 75-78. DOI: 10.3969/j.issn.1673-3800.2013.06.020
    [8]
    林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2015, 45(16): 87-94. DOI: 10.7667/j.issn.1674-3415.2015.16.013

    LIN Ying, GUO Zhihong, CHEN Yufeng. Convolutional-recursive network based current transformer infrared fault image diagnosis[J]. Power System Protection and Control, 2015, 45(16): 87-94. DOI: 10.7667/j.issn.1674-3415.2015.16.013
    [9]
    常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网[J]. 自动化学报, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm

    CHANG Liang, DENG Xiaoming, ZHOU Mingquan, et al. Convolutional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm
    [10]
    贾鑫. 基于双监督信号卷积神经网络的电气设备红外故障识别研究[D]. 天津: 天津理工大学, 2018.

    JIA Xin. Research on Infrared Fault Identification of Electrical Equipment Based on Double Supervised Signal Convolution Neural Network[D]. Tianjin: Tianjin University of Technology, 2018.
    [11]
    魏东, 龚庆武, 来文青, 等. 基于卷积神经网络的输电线路区内外故障判断及故障选相方法研究[J]. 中国电机工程学报, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm

    WEI Dong, LONG Qinwu, LAI Wenqing, et al. Research on internal and external fault diagnosis and fault-selection of transmission line based on convolutional neural network[J]. Proceedings of the CSEE, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm
    [12]
    KANG Xudong, ZHANG Xiangping, LI Shutao, et al. Hyperspectral anomaly detection with attribute and edge-preserving filters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5600-5611. DOI: 10.1109/TGRS.2017.2710145
    [13]
    HE Kaiming, SUN Jian, TANG Xiaoou. Guided image filtering[J] IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. DOI: 10.1109/TPAMI.2012.213
    [14]
    Durand F, Dorsey J. Fast bilateral filtering for the display of high - dynamic-range images[J]. ACM Transactions on Graphics, 2002, 21(3): 257-266. DOI: 10.1145/566654.566574
    [15]
    Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustic Speech Signal Processing, 1990, 38(10): 1760-1770. DOI: 10.1109/29.60107
    [16]
    ZHANG Yanfei, DU Bo, ZHANG Liangping, et al. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1376-1389. DOI: 10.1109/TGRS.2015.2479299
  • Related Articles

    [1]GE Bin, ZHENG Haijun, SHI Huaizhong, XIA Chenxing, WU Cheng. Infrared-Visible Person Re-Identification Based on Context Information[J]. Infrared Technology , 2025, 47(6): 722-728.
    [2]LYU Yang, XIN Hongwei, KANG Yusi, HE Yukun, CHEN Changzheng. Infrared and Visible Light Dual-Mode Seeker Optical System Design[J]. Infrared Technology , 2024, 46(1): 27-30.
    [3]YAN Yang, HUA Wenshen, ZHANG Yan, CUI Zihao, WU Xishan, IU Xun. Visible Near-infrared Hyperspectral Camouflage Target Characteristic Analysis[J]. Infrared Technology , 2019, 41(2): 171-175.
    [4]DAI Liqun, TANG Shaofan, XU Lina, SUN Qiyang, YANG Xiaobo, WANG Zhimou, JIN Zhanlei, ZHAO Yanhua. Development Overview of Space-borne Multi-spectral Imager with Band Range from Visible to Thermal Infrared[J]. Infrared Technology , 2019, 41(2): 107-117.
    [5]HE Shihao, LIU Jian, ZHANG Junju, ZENG Meng. Research on an Adaptive Camouflage Device Based on Near and Far Infrared Bands[J]. Infrared Technology , 2017, 39(9): 855-858.
    [6]WEI Chongyu, WANG Xinmin. Design of Intelligent Water Cannon System Based on PIRS and UV Detection[J]. Infrared Technology , 2016, 38(10): 877-883.
    [7]ZHOU Qiang, BAI Ting-zhu, LIU Ming-qi, QIU Chun. Near Infrared Scene Simulation Based on Visual Image[J]. Infrared Technology , 2015, 37(1): 11-15.
    [8]WU Guo-jun, BAI Ting-zhu, BAI Fu-ning. Research on Infrared Images Simulation by Inversing the Scene of the Visible Light Images[J]. Infrared Technology , 2011, 33(10): 574-579. DOI: 10.3969/j.issn.1001-8891.2011.10.004
    [9]FAN Yong-jie, JIN Wei-qi, LI Li, WANG Ling-xue, LUO Yuan, LI Jia-kun, ZHANG Chang-xing. Real Time Fusion System for Visible and IR Video Based on FPGA[J]. Infrared Technology , 2011, 33(5): 257-261. DOI: 10.3969/j.issn.1001-8891.2011.05.003
    [10]MA Li-fang, SHI Jia-ming, CHEN Zong-sheng. Discussion on the Reflectivity of Green Camouflage Coating at Visible Light and Near-infrared[J]. Infrared Technology , 2010, 32(5): 268-272. DOI: 10.3969/j.issn.1001-8891.2010.05.005
  • Cited by

    Periodical cited type(5)

    1. 熊展雄,彭向前. 基于强边缘的空间离焦模糊复原算法. 自动化与仪表. 2024(06): 86-90+106 .
    2. 李立,易诗,刘茜,程兴豪,王铖. 基于密集残差生成对抗网络的红外图像去模糊. 红外技术. 2024(06): 663-671 . 本站查看
    3. 刘怀广,董渊,汤勃,黄千稳. 焦炭光学组织离焦显微图像去模糊算法研究. 智能计算机与应用. 2023(09): 25-32 .
    4. 宋伟. 一种基于LOG先验信息的图像去模糊方法研究. 广东通信技术. 2023(11): 55-57+79 .
    5. 刘玉雯,吴玲玲,聂亮,陈靖. 光学合成孔径图像超分辨率重建技术研究. 计算机测量与控制. 2022(02): 160-165 .

    Other cited types(0)

Catalog

    Article views (192) PDF downloads (44) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return