Citation: | HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915. |
[1] |
刘嵘, 刘辉, 贾然, 等. 一种智能型电网设备红外诊断系统的设计[J]. 红外技术, 2020, 42(12): 1198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69
LIU Rong, LIU Hui, JIA Ran, et al. Design of intelligent infrared diagnosis system for power grid equipment[J]. Infrared Technology, 2020, 42(12): 1198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69
|
[2] |
张文峰, 彭向阳, 陈锐民, 等. 基于无人机红外视频的输电线路发热缺陷智能诊断技术[J]. 电网技术, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm
ZHANG Wenfeng, PENG Xiangyang, CHEN Ruiming, et al. Intelligent diagnostic techniques of abnormal heat defect in transmission lines based on unmanned helicopter infrared video[J]. Power System Technology, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm
|
[3] |
蒋昀宸, 樊绍胜, 陈骏星溆. 带电作业智能新技术及其应用现状[J]. 湖南电力, 2018, 38(5): 1-4. DOI: 10.3969/j.issn.1008-0198.2018.05.001
JIANG Yunchen, FAN Zhaosheng, CHEN Junxingxu. Smart newtechnologies and applications for live work[J]. Hunan Electric Power, 2018, 38(5): 1-4. DOI: 10.3969/j.issn.1008-0198.2018.05.001
|
[4] |
康龙. 基于红外图像处理的变电站设备故障诊断[D]. 北京: 华北电力大学, 2016.
KANG Long. Fault diagnosis of substation equipment based on infrared image processing[D]. Beijing: North China Electric Power University, 2016.
|
[5] |
王淼, 杜伟, 孙鸿博, 等. 基于红外图像识别的输电线路故障诊断方法[J]. 红外技术, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015
WANG Miao, DU Wei, SUN Hongbo, et al. Transmission line fault diagnosis method based on infrared image recognition[J]. Infrared Technology, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015
|
[6] |
胡洛娜, 彭云竹, 石林鑫. 核猫群红外图像异常检测方法在电力智能巡检中的应用[J]. 红外技术, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013
HU Luona, PENG Yunzhu, SHI Linxin. Anomaly detection method of infrared images based on kernel cat swarm optimization clustering with application in intelligent electrical power inspection[J]. Infrared Technology, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013
|
[7] |
魏钢, 冯中正, 唐跃林, 等. 输变电设备红外故障诊断技术与试验研究[J]. 电气技术, 2013, 14(6): 75-78. DOI: 10.3969/j.issn.1673-3800.2013.06.020
WEI Gang, FENG Zhongzheng, TANG Yuelin, et al. The infrared diagnostic technology of power transmission devices and experimental study[J]. Electrical Technology, 2013, 14(6): 75-78. DOI: 10.3969/j.issn.1673-3800.2013.06.020
|
[8] |
林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2015, 45(16): 87-94. DOI: 10.7667/j.issn.1674-3415.2015.16.013
LIN Ying, GUO Zhihong, CHEN Yufeng. Convolutional-recursive network based current transformer infrared fault image diagnosis[J]. Power System Protection and Control, 2015, 45(16): 87-94. DOI: 10.7667/j.issn.1674-3415.2015.16.013
|
[9] |
常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网[J]. 自动化学报, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm
CHANG Liang, DENG Xiaoming, ZHOU Mingquan, et al. Convolutional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm
|
[10] |
贾鑫. 基于双监督信号卷积神经网络的电气设备红外故障识别研究[D]. 天津: 天津理工大学, 2018.
JIA Xin. Research on Infrared Fault Identification of Electrical Equipment Based on Double Supervised Signal Convolution Neural Network[D]. Tianjin: Tianjin University of Technology, 2018.
|
[11] |
魏东, 龚庆武, 来文青, 等. 基于卷积神经网络的输电线路区内外故障判断及故障选相方法研究[J]. 中国电机工程学报, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm
WEI Dong, LONG Qinwu, LAI Wenqing, et al. Research on internal and external fault diagnosis and fault-selection of transmission line based on convolutional neural network[J]. Proceedings of the CSEE, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm
|
[12] |
KANG Xudong, ZHANG Xiangping, LI Shutao, et al. Hyperspectral anomaly detection with attribute and edge-preserving filters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5600-5611. DOI: 10.1109/TGRS.2017.2710145
|
[13] |
HE Kaiming, SUN Jian, TANG Xiaoou. Guided image filtering[J] IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. DOI: 10.1109/TPAMI.2012.213
|
[14] |
Durand F, Dorsey J. Fast bilateral filtering for the display of high - dynamic-range images[J]. ACM Transactions on Graphics, 2002, 21(3): 257-266. DOI: 10.1145/566654.566574
|
[15] |
Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustic Speech Signal Processing, 1990, 38(10): 1760-1770. DOI: 10.1109/29.60107
|
[16] |
ZHANG Yanfei, DU Bo, ZHANG Liangping, et al. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1376-1389. DOI: 10.1109/TGRS.2015.2479299
|
[1] | DAI Yueming, YANG Lufeng, TONG Xiongmin. Real-time Section State Verification Method of Energy Management System Low Voltage Equipment Based on Infrared Image and Deep Learning[J]. Infrared Technology , 2024, 46(12): 1464-1470. |
[2] | CHEN Qiuyan, ZHANG Xinyan, HE Min, TIAN Yichun, LIU Ning, GUO Rui, WANG Xiaohui, YOU Siyuan, ZHANG Xiukun. Identification of Pipeline Thermal Image Leakage Based on Deep Learning[J]. Infrared Technology , 2024, 46(5): 522-531. |
[3] | DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128. |
[4] | FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943. |
[5] | ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293. |
[6] | ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986. |
[7] | FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55. |
[8] | YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433. |
[9] | WU Xiao-sheng, SUN Jun-ding. Image Retrieval Based on Improvement Histogram and Spatial Feature[J]. Infrared Technology , 2007, 29(11): 666-669. DOI: 10.3969/j.issn.1001-8891.2007.11.012 |
[10] | AN Zhi-yong, DU Zhi-Qiang, ZHAO Shan, ZHOU Li-hua. A New Approach for Image Retrieval Based on Color and Spatial Features[J]. Infrared Technology , 2007, 29(6): 361-364. DOI: 10.3969/j.issn.1001-8891.2007.06.013 |