Citation: | HE Qian, LIU Boyun. Improved Infrared Image Edge Detection Algorithm Based on DexiNed[J]. Infrared Technology , 2021, 43(9): 876-884. |
[1] |
夏清, 胡振琪, 位蓓蕾, 等. 一种新的红外热像仪图像边缘检测方法[J]. 红外与激光工程, 2014, 43(1): 318-322. DOI: 10.3969/j.issn.1007-2276.2014.01.056
XIA Qing, HU Zhenqi, WEI Beilei, et al. New edge detection method for images of infrared thermal imager[J]. Infrared and Laser Engineering, 2014, 43(1): 318-322. DOI: 10.3969/j.issn.1007-2276.2014.01.056
|
[2] |
唐庆菊, 刘俊岩, 王扬, 等. 基于模糊C均值聚类和Canny算子的红外图像边缘识别与缺陷定量检测[J]. 红外与激光工程, 2016, 45(9): 281-285. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201609042.htm
TANG Qingju, LIU Junyan, WANG Yang, et al. Infrared image edge recognition and defect quantitative determination based on the algorithm of fuzzy C-means clustering and Canny operator[J]. Infrared and Laser Engineering, 2016, 45(9): 281-285. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201609042.htm
|
[3] |
Minh V H, Aleef T A, Pervaiz U, et al. Smoothness-based Edge Detection using Low-SNR Camera for Robot Naviga-tion[J/OL]. arXiv preprint arXiv: 1710.01416, 2017.
|
[4] |
LIU Lisang, LIANG Fenqiang, ZHENG Jishi, et al. Ship infrared image edge detection based on an improved adaptive Canny algorithm[J]. International Journal of Distributed Sensor Networks, 2018, 14(3): 51-57. http://www.onacademic.com/detail/journal_1000040876503810_4fec.html
|
[5] |
QIAO B M, LI S, XIAO Y. Infrared image edge detection applied research based on improved ant colony algorithm[C]//Proceedings of the 2015 International conference on Applied Science and Engineering Innovation, 2015: 31.
|
[6] |
王凤. 结合蚁群搜索与边缘检测的红外轮廓提取算法[J]. 激光与红外, 2015, 45(6): 722-727. DOI: 10.3969/j.issn.1001-5078.2015.06.025
WANG Feng. Infrared contour extraction algorithm based on ants search and edge detection[J]. Laser & Infrared, 2015, 45(6): 722-727. DOI: 10.3969/j.issn.1001-5078.2015.06.025
|
[7] |
ZHANG X, HAN R. The Application of Mathematical Morphology and Sobel Operator in Infrared Image Edge Detection[C]//International Industrial Informatics & Computer Engineering Conference, 2015: 949-954.
|
[8] |
YIN J, LU Y, GONG Z, et al. Edge Detection of High-Voltage Porcelain Insulators in Infrared Image Using Dual Parity Morphological Gradients[J]. IEEE Access, 2019, 26(7): 32728-32734. http://www.onacademic.com/detail/journal_1000042299647699_6769.html
|
[9] |
Bertasius G, SHI J, Torresani. Deep Edge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection[C]//Computer Vision & Pattern Recognition. IEEE, 2015: 4380-4389.
|
[10] |
XIE S, TU Z. Holistically-nested edge detection[C]//Proceedings of the IEEE international conference on computer vision, 2015: 1395-1403.
|
[11] |
LIU Y, CHENG M M, HU X, et al. Richer convolutional features for edge detection[C]//Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference, 2017: 5872-5881.
|
[12] |
HE J, ZHANG S, YANG M, et al. Bidirectional cascade network for perceptual edge detection[J/OL]. arXiv preprint arXiv: 1902.10903, 2019.
|
[13] |
DENG R, SHEN C, LIU S, et al. Learning to predictcrisp boundaries [C]//European Conference on Computer Vision, 2018: 1-17.
|
[14] |
Xavier Soria, Edgar Riba, Angel D. Sappa. Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection[J/OL]. arXiv preprint arXiv: 1909.01955v2, 2020.
|
[15] |
焦安波, 何淼, 罗海波. 一种改进的HED网络及其在边缘检测中的应用[J]. 红外技术, 2019, 41(1): 72-77. http://hwjs.nvir.cn/article/id/hwjs201901011
JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology, 2019, 41(1): 72-77. http://hwjs.nvir.cn/article/id/hwjs201901011
|
[16] |
Mely D A, Kim J, McGill M, et al. A systematic comparison between visual cues for boundary detection[J]. Vision Research, 2016, 120: 93-107. DOI: 10.1016/j.visres.2015.11.007
|
[17] |
Grigorescu C, Petkov N, Westenberg M A. Contour detection based on nonclassical receptive field inhibition[J]. IEEE Transactions on image processing, 2003, 12(7): 729-739. DOI: 10.1109/TIP.2003.814250
|
[18] |
Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, 2: 416-423.
|
[19] |
Arbelaez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33(5): 898-916. DOI: 10.1109/TPAMI.2010.161
|
[20] |
Silberman N, HoiemD, Kohli P, et al. Indoor segmentation and support inference from RGBD images[C]//European Conference on Computer Vision, 2012: 746-760.
|
[21] |
Mottaghi R, CHEN X, LIU X, et al. The role of context for object detection and semantic segmentation in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 891-898.
|
[22] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv preprint arXiv: 1409.1556, 2014.
|
[23] |
LI N, SU Z, CHEN Z, et al. A real-time aircraft infrared imaging simulation platform[J]. Optik International Journal for Light & Electron Optics, 2013, 124(17): 2885-2893. http://or.nsfc.gov.cn/bitstream/00001903-5/94940/1/1000006643792.pdf
|
[24] |
Davis J, Keck M. A Two-Stage Template Approach to Person Detection in Thermal Imagery[C]// 2005 Seventh IEEE Workshops on Applications of Computer Vision, 2005, 1: 364-369.
|
[25] |
WANG Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 967-981. http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=1CEF39B23BCE926AD6D155479B134452?doi=10.1.1.11.2477&rep=rep1&type=pdf
|
[26] |
ZHANG L, ZHANG L, MOU X, et al. FSIM: A Feature Similarity Index for Image Quality Assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386. DOI: 10.1109/TIP.2011.2109730
|
[1] | DAI Yueming, YANG Lufeng, TONG Xiongmin. Real-time Section State Verification Method of Energy Management System Low Voltage Equipment Based on Infrared Image and Deep Learning[J]. Infrared Technology , 2024, 46(12): 1464-1470. |
[2] | CHEN Qiuyan, ZHANG Xinyan, HE Min, TIAN Yichun, LIU Ning, GUO Rui, WANG Xiaohui, YOU Siyuan, ZHANG Xiukun. Identification of Pipeline Thermal Image Leakage Based on Deep Learning[J]. Infrared Technology , 2024, 46(5): 522-531. |
[3] | DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128. |
[4] | FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943. |
[5] | ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293. |
[6] | ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986. |
[7] | HE Qian, LIU Boyun. Review of Infrared Image Edge Detection Algorithms[J]. Infrared Technology , 2021, 43(3): 199-207. |
[8] | FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55. |
[9] | YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433. |
[10] | JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology , 2019, 41(1): 72-77. |