Citation: | CHEN Xu, WU Wei, PENG Dongliang, GU Yu. Infrared-PV: an Infrared Target Detection Dataset for Surveillance Application[J]. Infrared Technology , 2023, 45(12): 1304-1313. |
[1] |
陈钱, 隋修宝. 红外图像处理理论与技术[M]. 北京: 电子工业出版社, 2018.
CHEN Qian, SUI Xiubao. Infrared Image Processing Theory and Technology[M]. Beijing: Electronic Industry Press, 2018.
|
[2] |
刘让, 王德江, 贾平, 等. 红外图像弱小目标探测技术综述[J]. 激光与光电子学进展, 2016, 53(5): 050004. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201605004.htm
LIU Rang, WANG Dejiang, JIA Ping, et al. Overview of detection technology for small and dim targets in infrared images[J]. Progress in Laser and Optoelectronics, 2016, 53(5): 050004. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201605004.htm
|
[3] |
武斌. 红外弱小目标检测技术研究[D]. 西安: 西安电子科技大学. 2009.
WU Bing. Research on Infrared Dim Target Detection Technology[D]. Xi'an: Xidian University, 2009.
|
[4] |
Rawat S S, Verma S K, Kumar Y. Review on recent development in infrared small target detection algorithms[J]. Procedia Computer Science, 2020, 167: 2496-2505. DOI: 10.1016/j.procs.2020.03.302
|
[5] |
李俊宏, 张萍, 王晓玮, 等. 红外弱小目标检测算法综述[J]. 中国图象图形学报, 2020, 25(9): 1739-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202009002.htm
LI Junhong, ZHANG Ping, WANG Xiaowei, et al. Infrared small-target detection algorithms: a survey[J]. Journal of Image and Graphics, 2020, 25(9): 1739-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202009002.htm
|
[6] |
谷雨, 刘俊, 沈宏海, 等. 基于改进多尺度分形特征的红外图像弱小目标检测[J]. 光学精密工程, 2020, 28(6): 1375-1386. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202006016.htm
GU Yu, LIU Jun, SHEN Honghai, et al. Infrared image dim target detection based on improved multi-scale fractal features[J]. Optics and Precision Engineering, 2020, 28(6): 1375-1386. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202006016.htm
|
[7] |
LIU L, OUYANG W, WANG X G, et al. Deep learning for generic object detection: a survey[J]. International Journal of Computer Vision, 2020, 128(2): 261-318. DOI: 10.1007/s11263-019-01247-4
|
[8] |
REN S Q, HE K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031
|
[9] |
LIU W, Anguelov D, Erhan D, et al. Ssd: single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
|
[10] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
[11] |
王文秀, 傅雨田, 董峰, 等. 基于深度卷积神经网络的红外船只目标检测方法[J]. 光学学报, 2018, 38(7): 0712006. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201807020.htm
WANG W X, FU Y T, DONG F, et al. Infrared ship target detection method based on deep convolutional neural network[J]. Acta Optics, 2018, 38(7): 0712006. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201807020.htm
|
[12] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. DOI: 10.1145/3065386
|
[13] |
蒋志新. 基于深度学习的海上红外小目标检测方法研究[D]. 大连: 大连海事大学, 2019.
JIANG Z X. Research on the Detection Method of Marine Infrared Small Target Based on Deep Learning[D]. Dalian: Dalian Maritime University, 2019.
|
[14] |
陈铁明, 付光远, 李诗怡, 等. 基于YOLO v3的红外末制导典型目标检测[J]. 激光与光电子学进展, 2019, 56(16): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202222030.htm
CHEN T M, FU G Y, LI S Y, et al. Infrared terminal guidance typical target detection based on YOLOv3[J]. Progress in Laser and Optoelectronics, 2019, 56(16): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202222030.htm
|
[15] |
赵琰, 刘荻, 赵凌君. 基于Yolo v3的复杂环境红外弱小目标检测[J]. 航空兵器, 2020, 26(6): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201906006.htm
ZHAO Y, LIU D, ZHAO L J. Infrared small target detection in complex environment based on Yolo v3[J]. Aviation Weaponry, 2020, 26(6): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201906006.htm
|
[16] |
吴双忱, 左峥嵘. 基于深度卷积神经网络的红外小目标检测[J]. 红外与毫米波学报, 2019, 38(3): 371-380. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201903019.htm
WU S C, ZUO Z G. Infrared small target detection based on deep convolutional neural network[J]. Journal of Infrared and Millimeter Waves, 2019, 38(3): 371-380. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201903019.htm
|
[17] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
[18] |
李慕锴, 张涛, 崔文楠. 基于Yolo v3的红外行人小目标检测技术研究[J]. 红外技术, 2020, 42(2): 176-181. http://hwjs.nvir.cn/article/id/hwjs202002012
LI M K, ZHANG T, CUI W N. Research on infrared pedestrian small target detection technology based on Yolo v3[J]. Infrared Technology, 2020, 42(2): 176-181. http://hwjs.nvir.cn/article/id/hwjs202002012
|
[19] |
Everingham M, Eslami S A, Van Gool L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. DOI: 10.1007/s11263-014-0733-5
|
[20] |
LIN T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context[C]//European Conference on Computer Vision, 2014: 740-755.
|
[21] |
XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983.
|
[22] |
LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. DOI: 10.1016/j.isprsjprs.2019.11.023
|
[23] |
ZHU H, CHEN X, DAI W, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]//2015 IEEE International Conference on Image Processing (ICIP), 2015: 3735-3739.
|
[24] |
TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
|
[25] |
Hwang S, Park J, Kim N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1037-1045.
|
[26] |
Teledyne FLIR Systems. FLIR ADAS Dataset[DB/OL] [2023-11-27]. https://www.flir.com/oem/adas/adas-dataset-form/.
|
[27] |
Davis J W, Keck M A. A two-stage template approach to person detection in thermal imagery[C]//2005 Seventh IEEE Workshops on Applications of Computer Vision, 2005, 1: 364-369.
|
[28] |
CAI Z, Vasconcelos N. Cascade r-cnn: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
|
[29] |
PANG J, CHEN K, SHI J, et al. Libra r-cnn: Towards balanced learning for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 821-830.
|
[30] |
WU Y, CHEN Y, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10186-10195.
|
[31] |
Redmon J, Farhadi A. Yolov3: an incremental improvement [EB/OL] [2018-04-08]. https://arxiv.org/pdf/1804.02767.pdf.
|
[32] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[33] |
LINT Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
[34] |
Bochkovskiy A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL] [2020-04-22]. https://arxiv.org/pdf/2004.10934.pdf.
|
[35] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
|
[36] |
WANG K, LIEW J H, ZOU Y, et al. PaNet: Few-shot image semantic segmentation with prototype alignment[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 9197-9206.
|
[37] |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of 2020 Association for the Advancement of Artificial Intelligence, 2020: 12993-13000.
|
[38] |
TIAN Z, SHEN C, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, 2019: 9627-9636.
|
[39] |
CHEN K, WANG J Q, PANG J M, et al. Mmdetection: open mmlab detection toolbox and benchmark[EB/OL][2019-06-17]. https://arxiv.org/pdf/1906.07155.pdf.
|
[40] |
ZHANG H, WU C R, ZHANG Z Y, et al. Resnest: Split-attention networks[EB/OL] [2020-04-19]. https://arxiv.org/pdf/2004.08955.pdf.
|
1. |
王东,高俊光,陈磊,张恒伟,路亚旭. 喷气式飞机尾喷管及尾焰红外辐射特性测量分析. 激光与红外. 2024(07): 1097-1101 .
![]() |