GU Yaxiong, FENG Shuangshuang. A Holistic Segmentation Method for Faulty Electrical Equipment under Complex Background[J]. Infrared Technology , 2023, 45(5): 455-462.
Citation: GU Yaxiong, FENG Shuangshuang. A Holistic Segmentation Method for Faulty Electrical Equipment under Complex Background[J]. Infrared Technology , 2023, 45(5): 455-462.

A Holistic Segmentation Method for Faulty Electrical Equipment under Complex Background

More Information
  • Received Date: June 14, 2021
  • Revised Date: June 14, 2021
  • A method of positioning and integral segmentation of faulty equipment in infrared images acquired during the process of infrared monitoring of electrical equipment in substations with complex backgrounds is proposed to contribute to solving problems including inaccurate positioning and difficult segmentation of faulty equipment. First, the image was segmented using the SLIC superpixel algorithm and the superpixel block was transformed into the Lab color space. The faulty area was obtained after the fault was determined based on the threshold value. Second, relatively bright spots with the maximum connectivity in the image, including faulty equipment, were selected as the original seeds. The number of seeds was controlled based on the principle of maximum variance between classes. Accordingly, primary equipment was obtained using an improved regional growth method. Finally, the overall segmentation of the faulty electrical equipment was completed through an intersection calculation between the faulty area and the main equipment. The results show that the positioning and overall segmentation of faulty electrical equipment under complex backgrounds can be successfully completed using the proposed method. Compared with other segmentation methods, identification of faulty electrical equipment using this method is more complete and accurate.
  • [1]
    王启银, 薛建东, 任新辉. 一种自适应的变电站设备红外图像分割方法[J]. 红外技术, 2016, 38(9): 770-773. http://hwjs.nvir.cn/article/id/hwjs201609010

    WANG Qiyin, XUE Jiandong, REN Xinhui. An adaptive infrared image segmentation method for substation equipment[J]. Infrared Technology, 2016, 38(9): 770-773. http://hwjs.nvir.cn/article/id/hwjs201609010
    [2]
    王小芳, 毛华敏. 一种复杂背景下的电力设备红外图像分割方法[J]. 红外技术, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004

    WANG Xiaofang, MAO Huamin. Infrared image segmentation method for power equipment under complex background[J]. Infrared Technology, 2019, 41(12) : 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004
    [3]
    林颖, 郭志红, 陈玉峰. 基于卷积递归神经网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2015, 43(16): 87-94. DOI: 10.7667/j.issn.1674-3415.2015.16.013

    LIN Ying, GUO Zhihong, CHEN Yufeng. Convolutional-recursive network based current transformer infrared fault image diagnosis[J]. Power System Protection and Control, 2015, 43(16): 87-94. DOI: 10.7667/j.issn.1674-3415.2015.16.013
    [4]
    陈跃伟, 彭道刚, 夏飞, 等. 基于区域生长法和BP神经网络的红外图像识别[J]. 激光与红外, 2018, 48(3): 401-408. DOI: 10.3969/j.issn.1001-5078.2018.03.024

    CHEN Yuewei, PENG Daogang, XIA Fei, et al. Infrared image recognition based on region growing method and BP neural network[J]. Laser & Infrared, 2018, 48(3): 401-408. DOI: 10.3969/j.issn.1001-5078.2018.03.024
    [5]
    贾鑫, 张惊雷, 温显斌. 双监督信号深度学习的电气设备红外故障识别[J]. 红外与激光工程, 2018, 285(7): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807005.htm

    JIA Xin, ZHANG Jinglei, WEN Xianbin. Infrared fault identification of electrical equipment based on dual supervised signal deep learning[J]. Infrared and Laser Engineering, 2018, 285(7): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807005.htm
    [6]
    尹阳. 基于红外图像的变电站设备识别与热状态监测系统研究[D]. 西安: 西安科技大学, 2018.

    YIN Yang. Research on Substation Equipment Identification and Thermal State Monitoring System Based on Infrared Image[D]. Xi'an: Xi'an University of Science and Technology, 2018.
    [7]
    余成波, 曾亮, 张林. 基于OTSU和区域生长的电气设备多点故障分割[J]. 红外技术, 2018, 40(10): 1008-1012. http://hwjs.nvir.cn/article/id/hwjs201810013

    YU Chengbo, ZENG Liang, ZHANG Lin. Multipoint fault segmentation for electrical equipment based on OTSU and regional growth[J]. Infrared Technology, 2018, 40(10): 1008-1012. http://hwjs.nvir.cn/article/id/hwjs201810013
    [8]
    赵梦. 基于红外图像的电力设备故障分析研究[D]. 西安: 西安理工大学, 2020.

    ZHAO Meng. Research on Fault Analysis of Power Equipment Based on Infrared Image [D]. Xi 'an: Xi 'an University of Technology, 2020.
    [9]
    任新辉. 基于红外技术的变电站设备识别与热故障诊断[D]. 成都: 西南交通大学, 2016.

    REN Xinhui. Substation Equipment Identification and Thermal Fault Diagnosis Based on Infrared Technology[D]. Chengdu: Southwest Jiaotong University, 2016.
    [10]
    张锦文. 变电站电气设备红外图像分割方法研究[D]. 北京: 华北电力大学, 2018.

    ZHANG Jinwen. Research on Infrared Image Segmentation Method of Electrical Equipment in Substation[D]. Beijing: North China Electric Power University, 2018.
    [11]
    康龙. 基于红外图像处理的变电站设备故障诊断[D]. 北京: 华北电力大学, 2016.

    KANG Long. Fault Diagnosis of Substation Equipment Based on Infrared Image Processing[D]. Beijing: North China Electric Power University, 2016.
    [12]
    郭铭. 基于红外成像技术的变电站电气设备热故障诊断研究[D]. 阜新: 辽宁工程大学, 2019.

    GUO Ming. Research on Thermal Fault Diagnosis of Electrical Equipment In Substation Based on Infrared Imaging Technology[D]. Fuxin: Liaoning Engineering University, 2019.
    [13]
    刘辉, 石小龙. 结合显著性和超像素改进的GrabCut图像分割[J]. 红外技术, 2018, 40(1): 55-61. http://hwjs.nvir.cn/article/id/hwjs201801010

    LIU H, SHI X L. Improved grab cut segmentation based on salience and superpixels[J]. Infrared Technology, 2018, 40(1): 55-61. http://hwjs.nvir.cn/article/id/hwjs201801010
    [14]
    Levinshtein A, Stere A, Kutulakos K N, et al. Turbopixels: fast superpixels using geometric flows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2290-2297. DOI: 10.1109/TPAMI.2009.96
    [15]
    REN X F, Malik J. Learning a classification model for segmentation[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003: 10.
    [16]
    Veksler O, Boykov Y, Mehrani P. Superpixels and supervoxels in an energy optimization framework[C]//European Conference on Computer Vision(ECCV), 2013: 13-35.
    [17]
    赵文涛, 曹昕鸷, 田志勇. 基于自适应阈值区域生长的红外舰船目标分割方法[J]. 红外技术, 2018, 40(2): 158-163. http://hwjs.nvir.cn/article/id/hwjs201802010

    ZHAO Wentao, CAO Xinzhi, TIAN Zhiyong. Infrared ship target segmentation based on adaptive threshold region growth[J]. Infrared Technology, 2018, 40(2): 158-163. http://hwjs.nvir.cn/article/id/hwjs201802010
    [18]
    ZUCKER S W. Region growing: Childhood and adolescence[J]. Computer Graphics Image Processing, 1976(5): 382-399. http://ar.newsmth.net/att/dfd6fe6c43255/Region_growing_Childhood_and_adolescence.pdf
    [19]
    LI J, QIU M, ZHANG Y, et al. A fast obstacle detection method by fusion of double-layer region growing algorithm and grid-SECOND detector[J]. IEEE Access, 2020, 9: 32053-32063. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9309211
    [20]
    WANG W, WANG X J, LIU X W, et al. Image segmentation algorithm based on image complexity[J]. Journal of Detection & Control, 2015, 37(3): 5-9.
  • Related Articles

    [1]XU Shiwen, WANG Heng, ZHANG Hua, PANG Jie. Human Fall Detection Method Based on Key Points in Infrared Images[J]. Infrared Technology , 2021, 43(10): 1003-1007.
    [2]ZHANG Zhipeng, SHAO Xuejun, PANG Qing. Research on the Key Technology of 3D Laser Inverted Scanning[J]. Infrared Technology , 2021, 43(8): 752-756.
    [3]A Method of Object Tracking Based on Feature Point Matching[J]. Infrared Technology , 2016, 38(7): 597-601.
    [4]ZHAO De-li, ZHU You-pan, LI Yan, ZENG Bang-ze, PAN Chao, LUO Lin, WU Cheng. Investigation on Infrared and Low Light Level Image Registration Algorithm Based on Point Feature and Freeman Chain Code[J]. Infrared Technology , 2015, (6): 467-471.
    [5]ZHAO De-li, ZHU You-pan, WU Cheng, LI Ze-min, ZENG Bang-ze, LUO Lin, YANG Peng-wei, WANG Bing, LI Yan. Investigation on Improved Infrared Image Registration Algorithm Based on Point Feature and Gray Feature[J]. Infrared Technology , 2014, (10): 820-826.
    [6]YU Hong-sheng, JIN Wei-qi. SIFT Key-points Self-adaptive Extraction Algorithm for Video Images[J]. Infrared Technology , 2013, (12): 768-772.
    [7]YANG Li, YANG Hua. The Key Techniques and Applications of Infrared False Target[J]. Infrared Technology , 2006, 28(9): 531-534. DOI: 10.3969/j.issn.1001-8891.2006.09.009
    [8]ZHAO Qin, ZHOU Tao, SHU Qin. Discussion of Image Registration Based on Feature Points[J]. Infrared Technology , 2006, 28(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2006.06.005
    [9]Study on the Key Techniques of the Imaging Infrared Guidance for AAM[J]. Infrared Technology , 2003, 25(4): 45-48. DOI: 10.3969/j.issn.1001-8891.2003.04.011
    [10]Modification of the Infrared Point Measurement for Temperature[J]. Infrared Technology , 2002, 24(3): 49-51,55. DOI: 10.3969/j.issn.1001-8891.2002.03.013
  • Cited by

    Periodical cited type(2)

    1. 邢志坤. 基于LabVIEW的变电站移动机器人轨迹跟踪虚拟仿真系统设计. 自动化与仪表. 2024(07): 67-71 .
    2. 李辉,余大成,陈耀. 基于OWA算子和CWAA算子的变电站巡视周期优化. 广西电力. 2024(05): 50-54 .

    Other cited types(1)

Catalog

    Article views (360) PDF downloads (28) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return