Citation: | DING Huabin, DING Qiwen. Fusion Algorithm of Infrared and Visible Images Based on Semantic Loss[J]. Infrared Technology , 2023, 45(9): 941-947. |
[1] |
MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
|
[2] |
ZHU Y, LI C, LUO B, et al. Dense feature aggregation and pruning for RGBT tracking[C]// The 27th ACM International Conference. ACM, 2019: 465-472.
|
[3] |
Bhatnagar G, WU Q, ZHENG L. Directive contrast based multimodal medical image fusion in nsct domain[J]. IEEE Transactions on Multimedia, 2014, 9(5): 1014-1024.
|
[4] |
Poudel R, Liwicki S, Cipolla R. Fast-SCNN: fast semantic segmentation network[J/OL]. arXiv Preprint arXiv: 1902.04502, 2019. https://doi.org/ 10.48550/arXiv.1902.04502
|
[5] |
Cordts M, Omran M, Ramos S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 3213-3223.
|
[6] |
ZHOU W, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600-612. DOI: 10.1109/TIP.2003.819861
|
[7] |
HA Q, Watanabe K, Karasawa T, et al. MFNet: Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 4714-4722.
|
[8] |
Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library[J/OL]. Advances in Neural Information Processing Systems, 2019, https://doi.org/10.48550/arXiv.1912.01703.
|
[9] |
Prabhakar K R, Srikar V S, Babu R V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]// IEEE International Conference on Computer Vision (ICCV). IEEE Computer Society, 2017: 4714-4722.
|
[10] |
MA J, XU H, JIANG J, et al. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980-4995. DOI: 10.1109/TIP.2020.2977573
|
[11] |
LI H, WU X J, Durrani T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2020(99): 1-1.
|
[12] |
MA J, ZHANG H, SHAO Z, et al. GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14, Doi: 10.1109/TIM.2020.3038013.
|
1. |
张德银,黄少晗,赵志恒,李俊佟,张裕尧. 基于融合神经网络的飞机蒙皮缺陷检测的研究. 成都大学学报(自然科学版). 2023(04): 365-371 .
![]() |