YANG Jiuzhang, LIU Weijian, CHENG Yang. Asymmetric Infrared and Visible Image Fusion Based on Contrast Pyramid and Bilateral Filtering[J]. Infrared Technology , 2021, 43(9): 840-844.
Citation: YANG Jiuzhang, LIU Weijian, CHENG Yang. Asymmetric Infrared and Visible Image Fusion Based on Contrast Pyramid and Bilateral Filtering[J]. Infrared Technology , 2021, 43(9): 840-844.

Asymmetric Infrared and Visible Image Fusion Based on Contrast Pyramid and Bilateral Filtering

More Information
  • Received Date: January 11, 2021
  • Revised Date: February 01, 2021
  • This study proposes an asymmetric infrared and visible image fusion method based on a contrast pyramid to save the feature information of infrared image and the detail information of visible image simultaneously. First, the contrast pyramid is used to decompose the high-frequency and low-frequency information of the infrared and visible images; then, the high-frequency part is fused by taking the largest absolute value, and the low-frequency part is processed differently by the method based on bilateral filtering. Second, the inverse transform of the contrast pyramid was used to obtain the fused image. Subjective visual and objective index evaluations were conducted on the fused image. The results show that the algorithm performs well in highlighting the target feature information and retaining detailed feature information.
  • [1]
    Waxman A M, Gove A N, Fay D A, et al. Color night vision: opponent processing in the fusion of visible and IR imagery[J]. Neural Networks, 1997, 10(1): 1-6. http://www.onacademic.com/detail/journal_1000034198621910_6953.html
    [2]
    XIANG T, YAN L, GAO R. A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain[J]. Infrared Physics & Technology, 2015, 69: 53-61. http://www.onacademic.com/detail/journal_1000037435766010_b6cd.html
    [3]
    ZHAO J, GAO X, CHEN Y, et al. Multi-window visual saliency extraction for fusion of visible and infrared images[J]. Infrared Physics & Technology, 2016, 76: 295-302. http://smartsearch.nstl.gov.cn/paper_detail.html?id=4f0b14c597a48653341d44502ab3dc75
    [4]
    YAN L, CAO J, Rizvi S, et al. Improving the performance of image fusion based on visual saliency weight map combined with CNN[J]. IEEE Access, 2020, 8(99): 59976-59986. http://ieeexplore.ieee.org/document/9044861
    [5]
    Lewis J J, Robert J. O'Callaghan, Nikolov S G, et al. Pixel- and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119-130. DOI: 10.1016/j.inffus.2005.09.006
    [6]
    赵立昌, 张宝辉, 吴杰, 等. 基于灰度能量差异性的红外与可见光图像融合[J]. 红外技术, 2020, 42(8): 775-782. http://hwjs.nvir.cn/article/id/hwjs202008012

    ZHAO Lichang, ZHANG Baohui, WU Jie, et al. Fusion of infrared and visible images based on gray energy difference[J]. Infrared Technology, 2020, 42(8): 775-782. http://hwjs.nvir.cn/article/id/hwjs202008012
    [7]
    崔晓荣, 沈涛, 黄建鲁, 等. 基于BEMD改进的视觉显著性红外和可见光图像融合[J]. 红外技术, 2020, 42(11): 1061-1071. http://hwjs.nvir.cn/article/id/c89c0447-6d07-4a75-99f6-1bf8681cf588

    CUI Xiaorong, SHEN Tao, HUANG Jianlu, et al. Infrared and visible image fusion based on bemd and improved visual saliency[J]. Infrared Technology, 2020, 42(11): 1061-1071. http://hwjs.nvir.cn/article/id/c89c0447-6d07-4a75-99f6-1bf8681cf588
    [8]
    李辰阳, 丁坤, 翁帅, 等. 基于改进谱残差显著性图的红外与可见光图像融合[J]. 红外技术, 2020, 42(11): 1042-1047. http://hwjs.nvir.cn/article/id/6e57a6fb-ba92-49d9-a000-c00e7a933365

    LI Chenyang, DING Kun, WENG Shuai, et al. Image fusion of infrared and visible images based on residual significance[J]. Infrared Technology, 2020, 42(11): 1042-1047. http://hwjs.nvir.cn/article/id/6e57a6fb-ba92-49d9-a000-c00e7a933365
    [9]
    ZHOU Z, WANG B, LI S, et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 2016, 30: 1-13. DOI: 10.1016/j.inffus.2015.11.002
    [10]
    Toet A. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9: 245-253. DOI: 10.1016/0167-8655(89)90003-2
    [11]
    Akerman A. Pyramidal techniques for multisensor fusion[C]// Proceedings of SPIE the International Society for Optical Engineering, 1992, 1828: 124-131.
    [12]
    LI Huafeng, QIU Hongmei, YU Zhengtao, et al. Infrared and visible image fusion scheme based on NSCT and low-level visual features[J]. Infrared Physics and Technology, 2016, 76: 174-184. DOI: 10.1016/j.infrared.2016.02.005
    [13]
    彭进业, 王珺, 何贵青, 等. 基于非下采样Contourlet变换和稀疏表示的红外与可见光图像融合方法[J]. 兵工学报, 2013, 34(7): 815-820. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201307003.htm

    PENG Jinye, WANG Jun, HE Guiqing, et al. Fusion method for visible and infrared images based on non-subsampled Contourlet transform and sparse representation[J]. Acta Armamentarii, 2013, 34(7): 815-820. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201307003.htm
    [14]
    Pajares G, Jesús Manuel de la Cruz. A wavelet-based image fusion tutorial[J]. Pattern Recognition, 2004, 37(9): 1855-1872. DOI: 10.1016/j.patcog.2004.03.010
    [15]
    朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201712028.htm

    ZHU Pan, LIU Zeyang, HUANG Zhanhua. Infrared polarization and intensity image fusion based on dual-tree complex wavelet transform and sparse representation[J]. Acta Photonica Sinica, 2013, 34(7): 815-820. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201712028.htm
  • Related Articles

    [1]DAI Yueming, YANG Lufeng, TONG Xiongmin. Real-time Section State Verification Method of Energy Management System Low Voltage Equipment Based on Infrared Image and Deep Learning[J]. Infrared Technology , 2024, 46(12): 1464-1470.
    [2]CHEN Qiuyan, ZHANG Xinyan, HE Min, TIAN Yichun, LIU Ning, GUO Rui, WANG Xiaohui, YOU Siyuan, ZHANG Xiukun. Identification of Pipeline Thermal Image Leakage Based on Deep Learning[J]. Infrared Technology , 2024, 46(5): 522-531.
    [3]DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128.
    [4]FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943.
    [5]ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293.
    [6]ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986.
    [7]HE Qian, LIU Boyun. Review of Infrared Image Edge Detection Algorithms[J]. Infrared Technology , 2021, 43(3): 199-207.
    [8]FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55.
    [9]YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433.
    [10]JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology , 2019, 41(1): 72-77.
  • Cited by

    Periodical cited type(4)

    1. 陈秋菊,彭天昊,康万杰,何国锋. 特征融合的电力机械设备过热故障红外检测. 机械设计与制造. 2024(04): 337-341 .
    2. 尚华胜,甘淑,袁希平,朱智富,李绕波. 级联语义分割和边缘检测的GF-2影像耕地提取. 遥感信息. 2024(04): 134-143 .
    3. 刘志东. 改进神经网络的船舶红外图像边缘检测方法. 舰船科学技术. 2023(07): 166-169 .
    4. 浦莹开,张笃振. 一种细化边缘的轻量级边缘检测神经网络. 计算机应用研究. 2023(11): 3485-3489 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return