LIU Jia, LI Dengfeng. Infrared and Visible Light Image Fusion Based on Mahalanobis Distance and Guided Filter Weighting[J]. Infrared Technology , 2021, 43(2): 162-169.
Citation: LIU Jia, LI Dengfeng. Infrared and Visible Light Image Fusion Based on Mahalanobis Distance and Guided Filter Weighting[J]. Infrared Technology , 2021, 43(2): 162-169.

Infrared and Visible Light Image Fusion Based on Mahalanobis Distance and Guided Filter Weighting

More Information
  • Received Date: March 10, 2020
  • Revised Date: March 18, 2020
  • To improve the definition of fusion images and obtain better target information during the fusion of infrared and visible light images using the characteristics of non-subsampled contourlet transform(NSCT) coefficients, an Manalanobis distance weighted Laplacian energy combined with guided filtering is proposed to improve the frequency tuned (FT) algorithm. First, the visible light image is subjected to contrast limited adaptive histogram equalization(CLAHE), and the infrared image and the CLAHE processed visible light image are decomposed into a low-frequency approximate image and a high-frequency detail image through a multi-scale and multi-directional NSCT transform. Second, the FT algorithm improved by guided filtering isused to extract the significance graph of infrared images, the adaptive weighted fusion rule based on the significance graph of infrared images is used for low-frequency images, and the fusion rule based on the Laplace energy and maximum weighted by the Manalanobis distance is used for high-frequency images. Finally, the fusion image is obtained by the NSCT inverse transformation of the fused low-frequency and high-frequency images. The experimental results show that this fusion method has better performance in terms of subjective vision and objective indexes than other traditional fusion methods.
  • [1]
    LIU Z, CHAI Y, YIN H, et al. A novel multi-focus image fusion approach based on image decomposition[J]. Information Fusion, 2017, 35: 102-116. DOI: 10.1016/j.inffus.2016.09.007
    [2]
    Mauri G, Cova L, Beni S D, et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases[J]. Cardiovasc Intervent Radiol, 2015, 38(1): 143. DOI: 10.1007/s00270-014-0897-y
    [3]
    Tuia D, Marcos D, Camps-Valls G. Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2016, 120: 1-12. http://www.sciencedirect.com/science/article/pii/S0924271616301903
    [4]
    Baviskar J, Mulla A, Kudu N, et al. Sub-band exchange DWT based image fusion algorithm for enhanced security[C]//International Conference on Advances in Computing, Communications and Informatics of IEEE, 2014: 534-539.
    [5]
    ZHAO Cheng, HUANG Yongdong, QIU Shi. Infrared and visible image fusion algorithm based on saliency detection and adaptive double-channel spiking cortical model[J]. Infrared Physics and Technology, 2019: 102: 102976. DOI: 10.1016/j.infrared.2019.102976
    [6]
    SONG Minghui, LIU Lu, PENG Yuanxi, et al. Infrared & visible images fusion based on redundant directional lifting-based wavelet and saliency detection[J]. Infrared Physics and Technology, 2019, 101: 45-55. DOI: 10.1016/j.infrared.2019.05.017
    [7]
    甄媚, 王书朋. 可见光与红外图像自适应加权平均融合方法[J]. 红外技术, 2019, 41(4): 341-346. http://hwjs.nvir.cn/article/id/hwjs201904008

    ZHEN Mei, WANG Shupeng. An adaptive weight average fusion method for visible and infrared images[J]. Infrared Technology, 2019, 41(4): 341-346. http://hwjs.nvir.cn/article/id/hwjs201904008
    [8]
    甘玲, 张倩雯. 结合NSCT与引导滤波的图像融合方法[J]. 红外技术, 2018, 40(5): 444-448, 454. http://hwjs.nvir.cn/article/id/hwjs201805007

    GAN Ling, ZHANG Qianwen. Image fusion method combining non-subsampled contourlet transform and guide filtering[J]. Infrared Technology, 2018, 40(5): 444-448, 454. http://hwjs.nvir.cn/article/id/hwjs201805007
    [9]
    刘智嘉, 贾鹏, 夏寅辉, 等. 基于红外与可见光图像融合技术发展与性能评价[J]. 激光与红外, 2019, 49(5): 633-640. DOI: 10.3969/j.issn.1001-5078.2019.05.021

    LIU Zhijia, JIA Peng, XIA Yinhui, et al. Development and performance evaluation of infrared and visual image fusion technology[J]. Laser and Infrared, 2019, 49(5): 633-640. DOI: 10.3969/j.issn.1001-5078.2019.05.021
    [10]
    肖儿良, 刘雯雯. 多尺度梯度域可见光与红外热图像融合方法研究[J]. 计算机应用研究, 2015, 32(10): 3160-3163, 3167. DOI: 10.3969/j.issn.1001-3695.2015.10.065

    XIAO Erliang, LIU Wenwen. Research of multi-scale gradient domain visible and thermal image fusion method[J]. Application Research of Computers, 2015, 32(10): 3160-3163, 3167. DOI: 10.3969/j.issn.1001-3695.2015.10.065
    [11]
    WANG Shiying, SHEN Yan. Multi-modal image fusion based on saliency guided in NSCT domain[J]. IET Image Processing, 2020, 14(13): 3188-3201. DOI: 10.1049/iet-ipr.2019.1319
    [12]
    刘斌, 辛迦楠, 谌文江, 等. 不可分拉普拉斯金字塔构造及其在多光谱图像融合中的应用[J]. 计算机应用, 2019, 39(2): 564-570. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201902045.htm

    LIU Bin, XIN Jianan, CHEN Wenjiang, et al. Construction of non-separable Laplacian pyramid and its application in multi-spectral image fusion[J]. Journal of Computer Applications, 2019, 39(2): 564-570. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201902045.htm
    [13]
    Baviskar J, Mulla A, Kudu N, et al. Sub-band exchange DWT based image fusion algorithm for enhanced security[C]//International Conference on Advances in Computing, Communications and Informatics of IEEE, 2014: 534-539.
    [14]
    郭全民, 王言, 李翰山. 改进IHS-Curvelet变换融合可见光与红外图像抗晕光方法[J]. 红外与激光工程, 2018, 47(11): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811060.htm

    GUO Quanmin, WANG Yan, LI Hanshan. Anti-halation method of visible and infrared image fusion based on improved IHS-curvelet transform[J]. Infrared and Laser Engineering, 2018, 47(11): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811060.htm
    [15]
    Do Minh N, Vetterli Martin. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2005, 14(12): 2091-2107. DOI: 10.1109/TIP.2005.859376
    [16]
    胡顺石, 丁琳, 秦建新, 等. 基于Iαβ色彩空间和Contourlet变换相结合的融合方法[J]. 计算机应用研究, 2010, 27(4): 1521-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201004089.htm

    HU Shunshi, DING Lin, QIN Jianxin. Image fusion technique based on combination of Iαβ color space and contourlet transform[J]. Application Research of Computers, 2010, 27(4): 1521-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201004089.htm
    [17]
    HOU Yingkun, ZHAO Chunxia, LIU Mingxia. The nonsubsampled contourlet transform: theory, design, and applications[J]. International Conference on Computer Science and Software Engineering of IEEE, 2008, DOI: 10.1109/CSSE.2008.806.
    [18]
    刘卷舒, 蒋伟. 改进的基于非下采样的Contourlet变换的图像融合算法[J]. 计算机应用, 2018, 38(S1): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2018S1046.htm

    LIU Juanshu, JIANG Wei. Improved image fusion algorithm based on nonsubsampled Contourlet transform[J]. Journal of Computer Applications, 2018, 38(S1): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2018S1046.htm
    [19]
    常诚, 黄国荣, 常雅男, 等. 基于非下采样Contourlet变换的无人机景象匹配算法[J]. 科学技术与工程, 2014, 14(2): 137-140, 171. DOI: 10.3969/j.issn.1671-1815.2014.02.032

    CHANG Cheng, HUANG Guorong, CHANG Yanan, et al. Scene matching algorithm for unmanned aerial vehicle based on nonsubsampled contourlet transform[J]. Science Technology and Engineering, 2014, 14(2): 137-140, 171. DOI: 10.3969/j.issn.1671-1815.2014.02.032
    [20]
    林子慧, 魏宇星, 张建林, 等. 基于显著性图的红外与可见光图像融合[J]. 红外技术, 2019, 41(7): 640-645. http://hwjs.nvir.cn/article/id/hwjs201907008

    LIN Zihui, WEI Yuxing, ZHANG Jianlin, et al. Image fusion of infrared and visible image based on saliency map[J]. Infrared Technology, 2019, 41(7): 640-645. http://hwjs.nvir.cn/article/id/hwjs201907008
    [21]
    刘玉婷, 陈峥, 付占方, 等. 基于CLAHE的红外图像增强算法[J]. 激光与红外, 2016, 46(10): 1290-1294. DOI: 10.3969/j.issn.1001-5078.2016.10.023

    LIU Yuting, CHEN Zheng, FU Zhanfang, et al. Infrared image enhancement algorithm based on CLAHE[J]. Laser and Infrared, 2016, 46(10): 1290-1294. DOI: 10.3969/j.issn.1001-5078.2016.10.023
    [22]
    Achanta R, Hemami S, Estrada F. Frequency-tuned salient region detection[C]//Computer Vision and Pattern Recognition of IEEE, 2009: DOI: 10.1109/CVPR.2009.5206596.
    [23]
    谢伟, 王莉明, 胡欢君, 等. 结合引导滤波的自适应多曝光图像融合[J]. 计算机工程与应用, 2019, 55(4): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201904029.htm

    XIE Wei, WANG Liming, HU Huanjun, et al. Adaptive multi-exposure image fusion with guided filtering[J]. Computer Engineering and Applications, 2019, 55(4): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201904029.htm
    [24]
    孙晓龙, 王正勇, 符耀庆, 等. 基于改进拉普拉斯能量和的快速图像融合[J]. 计算机工程与应用, 2015, 51(5): 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201505037.htm

    SUN Xiaolong, WANG Zhengyong, FU Yaoqing, et al. Fast image fusion based on sum of modified Laplacian[J]. Computer Engineering and Applications, 2015, 51(5): 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201505037.htm
    [25]
    刘光宇, 庞永杰. 基于阿尔法均值算法和马氏距离的图像自适应滤波[J]. 吉林大学学报: 工学版, 2015, 45(2): 670-674. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201502050.htm

    LIU Guangyu, PANG Yongjie. Filter of the optical image based on alpha-trimmed mean filter and Mahalanobis distance[J]. Journal of Jilin University: Engineering and Technology Edition, 2015, 45(2): 670-674. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201502050.htm
  • Related Articles

    [1]GONG Jiamin, ZHANG Lei, LIU Shanghui, JIANG Jiewei, JIN Ku. Image Fusion Based on Simplified Two-Dimensional Kaniadakis Entropy Segmentation Algorithm and Fast Guided Filtering[J]. Infrared Technology , 2025, 47(2): 201-210.
    [2]JIANG Jiewei, LIU Shanghui, JIN Ku, LIU Haiyang, WEI Xumeng, GONG Jiamin. Infrared and Visible-Light Image Fusion Based on FCM and Guided Filtering[J]. Infrared Technology , 2023, 45(3): 249-256.
    [3]HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088.
    [4]CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403.
    [5]CHENG Tiedong, LU Xiaoliang, YI Qiwen, TAO Zhengliang, ZHANG Zhizhao. Research on Infrared Image Enhancement Method Combined with Single-scale Retinex and Guided Image Filter[J]. Infrared Technology , 2021, 43(11): 1081-1088.
    [6]HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915.
    [7]GE Peng, YANG Bo, HAN Qinglin, LIU Peng, CHEN Shugang, HU Douming, ZHANG Qiaoyan. Infrared Image Detail Enhancement Algorithm Based on Hierarchical Processing by Guided Image Filter[J]. Infrared Technology , 2018, 40(12): 1161-1169.
    [8]GAN Ling, ZHANG Qianwen. Image Fusion Method Combining Non-subsampled Contourlet Transform and Guide Filtering[J]. Infrared Technology , 2018, 40(5): 444-448,454.
    [9]GE Peng, YANG Bo, MAO Wenbiao, CHEN Shaolin, ZHANG Qiaoyan, HAN Qinglin. High Dynamic Range Infrared Image Enhancement Algorithm Based on Guided Image Filter[J]. Infrared Technology , 2017, 39(12): 1092-1097.
    [10]LIU Zhe, HAN jiuqiang, HUANG ShiQi. Single Image Super-Resolution Based on Multi-Guided Filtering[J]. Infrared Technology , 2017, 39(10): 920-927.
  • Cited by

    Periodical cited type(8)

    1. 朱亚辉. NSCT框架下动静态联合滤波的红外与可见光图像融合方法. 电脑知识与技术. 2024(08): 1-4 .
    2. 张剑,高云,何栋. 基于离散2-D小波多级分解的电容器外观缺陷视觉检测方法. 电子器件. 2024(05): 1255-1260 .
    3. 陈超洋,姜媛媛. 基于深度图像分解的红外与可见光图像融合. 红外技术. 2024(12): 1362-1370 . 本站查看
    4. 李晨,侯进,李金彪,陈子锐. 基于注意力与残差级联的红外与可见光图像融合方法. 计算机工程. 2022(07): 234-240 .
    5. 李文,叶坤涛,舒蕾蕾,李晟. 基于高斯模糊逻辑和ADCSCM的红外与可见光图像融合算法. 红外技术. 2022(07): 693-701 . 本站查看
    6. 李永萍,杨艳春,党建武,王阳萍. 基于变换域VGGNet19的红外与可见光图像融合. 红外技术. 2022(12): 1293-1300 . 本站查看
    7. 孙学蕾,高宏伟. 改进小波变换的红外与可见光融合方法研究. 沈阳理工大学学报. 2021(03): 19-23+28 .
    8. 赵汝海,汪方斌. 基于灰度和信息熵融合的金属疲劳偏振热像分割算法. 激光与光电子学进展. 2021(24): 260-271 .

    Other cited types(7)

Catalog

    Article views (328) PDF downloads (48) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return