LIU Jia, LI Dengfeng. Infrared and Visible Light Image Fusion Based on Mahalanobis Distance and Guided Filter Weighting[J]. Infrared Technology , 2021, 43(2): 162-169.
Citation: LIU Jia, LI Dengfeng. Infrared and Visible Light Image Fusion Based on Mahalanobis Distance and Guided Filter Weighting[J]. Infrared Technology , 2021, 43(2): 162-169.

Infrared and Visible Light Image Fusion Based on Mahalanobis Distance and Guided Filter Weighting

More Information
  • Received Date: March 10, 2020
  • Revised Date: March 18, 2020
  • To improve the definition of fusion images and obtain better target information during the fusion of infrared and visible light images using the characteristics of non-subsampled contourlet transform(NSCT) coefficients, an Manalanobis distance weighted Laplacian energy combined with guided filtering is proposed to improve the frequency tuned (FT) algorithm. First, the visible light image is subjected to contrast limited adaptive histogram equalization(CLAHE), and the infrared image and the CLAHE processed visible light image are decomposed into a low-frequency approximate image and a high-frequency detail image through a multi-scale and multi-directional NSCT transform. Second, the FT algorithm improved by guided filtering isused to extract the significance graph of infrared images, the adaptive weighted fusion rule based on the significance graph of infrared images is used for low-frequency images, and the fusion rule based on the Laplace energy and maximum weighted by the Manalanobis distance is used for high-frequency images. Finally, the fusion image is obtained by the NSCT inverse transformation of the fused low-frequency and high-frequency images. The experimental results show that this fusion method has better performance in terms of subjective vision and objective indexes than other traditional fusion methods.
  • [1]
    LIU Z, CHAI Y, YIN H, et al. A novel multi-focus image fusion approach based on image decomposition[J]. Information Fusion, 2017, 35: 102-116. DOI: 10.1016/j.inffus.2016.09.007
    [2]
    Mauri G, Cova L, Beni S D, et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases[J]. Cardiovasc Intervent Radiol, 2015, 38(1): 143. DOI: 10.1007/s00270-014-0897-y
    [3]
    Tuia D, Marcos D, Camps-Valls G. Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2016, 120: 1-12. http://www.sciencedirect.com/science/article/pii/S0924271616301903
    [4]
    Baviskar J, Mulla A, Kudu N, et al. Sub-band exchange DWT based image fusion algorithm for enhanced security[C]//International Conference on Advances in Computing, Communications and Informatics of IEEE, 2014: 534-539.
    [5]
    ZHAO Cheng, HUANG Yongdong, QIU Shi. Infrared and visible image fusion algorithm based on saliency detection and adaptive double-channel spiking cortical model[J]. Infrared Physics and Technology, 2019: 102: 102976. DOI: 10.1016/j.infrared.2019.102976
    [6]
    SONG Minghui, LIU Lu, PENG Yuanxi, et al. Infrared & visible images fusion based on redundant directional lifting-based wavelet and saliency detection[J]. Infrared Physics and Technology, 2019, 101: 45-55. DOI: 10.1016/j.infrared.2019.05.017
    [7]
    甄媚, 王书朋. 可见光与红外图像自适应加权平均融合方法[J]. 红外技术, 2019, 41(4): 341-346. http://hwjs.nvir.cn/article/id/hwjs201904008

    ZHEN Mei, WANG Shupeng. An adaptive weight average fusion method for visible and infrared images[J]. Infrared Technology, 2019, 41(4): 341-346. http://hwjs.nvir.cn/article/id/hwjs201904008
    [8]
    甘玲, 张倩雯. 结合NSCT与引导滤波的图像融合方法[J]. 红外技术, 2018, 40(5): 444-448, 454. http://hwjs.nvir.cn/article/id/hwjs201805007

    GAN Ling, ZHANG Qianwen. Image fusion method combining non-subsampled contourlet transform and guide filtering[J]. Infrared Technology, 2018, 40(5): 444-448, 454. http://hwjs.nvir.cn/article/id/hwjs201805007
    [9]
    刘智嘉, 贾鹏, 夏寅辉, 等. 基于红外与可见光图像融合技术发展与性能评价[J]. 激光与红外, 2019, 49(5): 633-640. DOI: 10.3969/j.issn.1001-5078.2019.05.021

    LIU Zhijia, JIA Peng, XIA Yinhui, et al. Development and performance evaluation of infrared and visual image fusion technology[J]. Laser and Infrared, 2019, 49(5): 633-640. DOI: 10.3969/j.issn.1001-5078.2019.05.021
    [10]
    肖儿良, 刘雯雯. 多尺度梯度域可见光与红外热图像融合方法研究[J]. 计算机应用研究, 2015, 32(10): 3160-3163, 3167. DOI: 10.3969/j.issn.1001-3695.2015.10.065

    XIAO Erliang, LIU Wenwen. Research of multi-scale gradient domain visible and thermal image fusion method[J]. Application Research of Computers, 2015, 32(10): 3160-3163, 3167. DOI: 10.3969/j.issn.1001-3695.2015.10.065
    [11]
    WANG Shiying, SHEN Yan. Multi-modal image fusion based on saliency guided in NSCT domain[J]. IET Image Processing, 2020, 14(13): 3188-3201. DOI: 10.1049/iet-ipr.2019.1319
    [12]
    刘斌, 辛迦楠, 谌文江, 等. 不可分拉普拉斯金字塔构造及其在多光谱图像融合中的应用[J]. 计算机应用, 2019, 39(2): 564-570. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201902045.htm

    LIU Bin, XIN Jianan, CHEN Wenjiang, et al. Construction of non-separable Laplacian pyramid and its application in multi-spectral image fusion[J]. Journal of Computer Applications, 2019, 39(2): 564-570. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201902045.htm
    [13]
    Baviskar J, Mulla A, Kudu N, et al. Sub-band exchange DWT based image fusion algorithm for enhanced security[C]//International Conference on Advances in Computing, Communications and Informatics of IEEE, 2014: 534-539.
    [14]
    郭全民, 王言, 李翰山. 改进IHS-Curvelet变换融合可见光与红外图像抗晕光方法[J]. 红外与激光工程, 2018, 47(11): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811060.htm

    GUO Quanmin, WANG Yan, LI Hanshan. Anti-halation method of visible and infrared image fusion based on improved IHS-curvelet transform[J]. Infrared and Laser Engineering, 2018, 47(11): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811060.htm
    [15]
    Do Minh N, Vetterli Martin. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2005, 14(12): 2091-2107. DOI: 10.1109/TIP.2005.859376
    [16]
    胡顺石, 丁琳, 秦建新, 等. 基于Iαβ色彩空间和Contourlet变换相结合的融合方法[J]. 计算机应用研究, 2010, 27(4): 1521-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201004089.htm

    HU Shunshi, DING Lin, QIN Jianxin. Image fusion technique based on combination of Iαβ color space and contourlet transform[J]. Application Research of Computers, 2010, 27(4): 1521-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201004089.htm
    [17]
    HOU Yingkun, ZHAO Chunxia, LIU Mingxia. The nonsubsampled contourlet transform: theory, design, and applications[J]. International Conference on Computer Science and Software Engineering of IEEE, 2008, DOI: 10.1109/CSSE.2008.806.
    [18]
    刘卷舒, 蒋伟. 改进的基于非下采样的Contourlet变换的图像融合算法[J]. 计算机应用, 2018, 38(S1): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2018S1046.htm

    LIU Juanshu, JIANG Wei. Improved image fusion algorithm based on nonsubsampled Contourlet transform[J]. Journal of Computer Applications, 2018, 38(S1): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2018S1046.htm
    [19]
    常诚, 黄国荣, 常雅男, 等. 基于非下采样Contourlet变换的无人机景象匹配算法[J]. 科学技术与工程, 2014, 14(2): 137-140, 171. DOI: 10.3969/j.issn.1671-1815.2014.02.032

    CHANG Cheng, HUANG Guorong, CHANG Yanan, et al. Scene matching algorithm for unmanned aerial vehicle based on nonsubsampled contourlet transform[J]. Science Technology and Engineering, 2014, 14(2): 137-140, 171. DOI: 10.3969/j.issn.1671-1815.2014.02.032
    [20]
    林子慧, 魏宇星, 张建林, 等. 基于显著性图的红外与可见光图像融合[J]. 红外技术, 2019, 41(7): 640-645. http://hwjs.nvir.cn/article/id/hwjs201907008

    LIN Zihui, WEI Yuxing, ZHANG Jianlin, et al. Image fusion of infrared and visible image based on saliency map[J]. Infrared Technology, 2019, 41(7): 640-645. http://hwjs.nvir.cn/article/id/hwjs201907008
    [21]
    刘玉婷, 陈峥, 付占方, 等. 基于CLAHE的红外图像增强算法[J]. 激光与红外, 2016, 46(10): 1290-1294. DOI: 10.3969/j.issn.1001-5078.2016.10.023

    LIU Yuting, CHEN Zheng, FU Zhanfang, et al. Infrared image enhancement algorithm based on CLAHE[J]. Laser and Infrared, 2016, 46(10): 1290-1294. DOI: 10.3969/j.issn.1001-5078.2016.10.023
    [22]
    Achanta R, Hemami S, Estrada F. Frequency-tuned salient region detection[C]//Computer Vision and Pattern Recognition of IEEE, 2009: DOI: 10.1109/CVPR.2009.5206596.
    [23]
    谢伟, 王莉明, 胡欢君, 等. 结合引导滤波的自适应多曝光图像融合[J]. 计算机工程与应用, 2019, 55(4): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201904029.htm

    XIE Wei, WANG Liming, HU Huanjun, et al. Adaptive multi-exposure image fusion with guided filtering[J]. Computer Engineering and Applications, 2019, 55(4): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201904029.htm
    [24]
    孙晓龙, 王正勇, 符耀庆, 等. 基于改进拉普拉斯能量和的快速图像融合[J]. 计算机工程与应用, 2015, 51(5): 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201505037.htm

    SUN Xiaolong, WANG Zhengyong, FU Yaoqing, et al. Fast image fusion based on sum of modified Laplacian[J]. Computer Engineering and Applications, 2015, 51(5): 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201505037.htm
    [25]
    刘光宇, 庞永杰. 基于阿尔法均值算法和马氏距离的图像自适应滤波[J]. 吉林大学学报: 工学版, 2015, 45(2): 670-674. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201502050.htm

    LIU Guangyu, PANG Yongjie. Filter of the optical image based on alpha-trimmed mean filter and Mahalanobis distance[J]. Journal of Jilin University: Engineering and Technology Edition, 2015, 45(2): 670-674. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201502050.htm
  • Related Articles

    [1]XU Haiyang, ZHAO Wei, LIU Jianye. Infrared and Visible Image Registration Algorithm Based on Edge Structure Features[J]. Infrared Technology , 2023, 45(8): 858-862.
    [2]ZHAO Tiancheng, LUO Lyu, YANG Daiyong, LIU He, YUAN Gang, XU Zhihao. A Multi-Attribute Fusion Method for Digitizing Infrared Thermal Characteristics of Power Equipment[J]. Infrared Technology , 2021, 43(11): 1097-1103.
    [3]YIN Aijun, YAO Wenjie. The Evaluation Method and Application of Hidden Markov in Eddy Current Thermal Imaging[J]. Infrared Technology , 2019, 41(12): 1141-1145,1150.
    [4]LI Ruidong, SUN Xiechang, LI Meng. Infrared Feature Extraction and Recognition Technology of Space Target[J]. Infrared Technology , 2017, 39(5): 427-435.
    [5]XU Dehai, WEI Xueming, PENG Yao, MIAO Kang, REN Mingyi. Feature Extraction and Recognition of Ships by an Uncompleted Dictionary[J]. Infrared Technology , 2016, 38(9): 765-769.
    [6]WANG Kun, ZHANG Kai, WANG Li, ZHUGE Jing-chang. Infrared Image Segmentation Based on MRF Combined with Two-algorithm Game[J]. Infrared Technology , 2015, (2): 134-138.
    [7]WANG Kun, ZHANG Kai, WANG Li, ZHUGE Jing-chang. Infrared Image Segmentation Algorithm Based on MRF Combined with the Game-theory[J]. Infrared Technology , 2014, (10): 801-806.
    [8]CHEN Ya-bing, WANG Yong-zhong, WANG Yan-hua. IR Feature Extraction Based on Imbalance Fisher Discrimination[J]. Infrared Technology , 2008, 30(7): 395-398. DOI: 10.3969/j.issn.1001-8891.2008.07.007
    [9]A Tracking Method Based on Curve Fitting Prediction of IR Object[J]. Infrared Technology , 2003, 25(4): 23-25,31. DOI: 10.3969/j.issn.1001-8891.2003.04.006
    [10]Application of the Characteristic Extraction for the Detection of the Internal Micro Bulk Defects in Semiconducting Materials by Near Infrared Laser Scattering Light Distribution Analyze Technology[J]. Infrared Technology , 2002, 24(3): 23-26. DOI: 10.3969/j.issn.1001-8891.2002.03.006
  • Cited by

    Periodical cited type(5)

    1. 曹一青,姚咏儿,沈志娟,吕丽军. 超广角透射式日盲紫外光学系统设计. 量子电子学报. 2024(04): 607-615 .
    2. 司昌田,杨磊,郭程祥,史天翼,谢洪波. 基于衍射元件的宽光谱紫外中继光学系统研究. 应用光学. 2023(03): 476-483 .
    3. 杨代勇,刘赫,林海丹,于群英,列剑平,李易. 电力设备外绝缘放电声-光协同检测及诊断技术. 电瓷避雷器. 2023(06): 209-218 .
    4. 向宇,方航. 机载紫外告警干扰源处理研究. 舰船电子工程. 2022(03): 89-92 .
    5. 陈塑淏,吕博,刘伟奇,冯睿,魏忠伦. 用于电晕检测的日盲紫外成像系统设计. 光子学报. 2022(09): 363-372 .

    Other cited types(2)

Catalog

    Article views (328) PDF downloads (48) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return