Citation: | LONG Zhiliang, DENG Yueming, WANG Runmin, DONG Jun. Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation[J]. Infrared Technology , 2023, 45(7): 705-713. |
[1] |
MA J, TANG L, XU M, et al. STD FusionNet: An infrared and visible image fusion network based on salient target detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.
|
[2] |
MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
|
[3] |
YAN H, ZHANG J X, ZHANG X. Injected infrared and visible image fusion via l1 decomposition model and guided filtering[J]. IEEE Transactions on Computational Imaging, 2022, 8: 162-173. DOI: 10.1109/TCI.2022.3151472
|
[4] |
唐霖峰, 张浩, 徐涵, 等. 基于深度学习的图像融合方法综述[J]. 中国图象图形学报, 2023, 28(1): 3-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202301002.htm
TANG L F, ZHANG H, XU H, et al. Deep learning-based image fusion: a survey[J]. Journal of Image and Graphics, 2023, 28(1): 3-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202301002.htm
|
[5] |
ZHANG X. Deep learning-based multi-focus image fusion: A survey and a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(9): 4819-4838.
|
[6] |
REN L, PAN Z, CAO J, et al. Infrared and visible image fusion based on weighted variance guided filter and image contrast enhancement[J]. Infrared Physics & Technology, 2021, 114: 103662.
|
[7] |
LI G, LIN Y, QU X. An infrared and visible image fusion method based on multi-scale transformation and norm optimization[J]. Information Fusion, 2021, 71: 109-129. DOI: 10.1016/j.inffus.2021.02.008
|
[8] |
TAN X, GUO L. Visible and infrared image fusion based on visual saliency detection[C]//2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). IEEE, 2020: 134-137.
|
[9] |
Bavirisetti D P, Dhuli R. Two-scale image fusion of visible and infrared images using Sali ency detection[J]. Infrared Physics & Technology, 2016, 76: 52-64.
|
[10] |
霍星, 邹韵, 陈影, 等. 双尺度分解和显著性分析相结合的红外与可见光图像融合[J]. 中国图象图形学报, 2021, 26(12): 2813-2825. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202112005.htm
HUO X, ZOU Y, CHEN Y, et al. Dual-scale decomposition and saliency analysis based infrared and visible image fusion[J]. Journal of Image and Graphics, 2021, 26(12): 2813-2825 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202112005.htm
|
[11] |
LIU G, YAN S. Latent low-rank representation for subspace segmentation and feature extraction[C]//2011 International Conference on Computer Vision. IEEE, 2011: 1615-1622.
|
[12] |
孙彬, 诸葛吴为, 高云翔, 等. 基于潜在低秩表示的红外和可见光图像融合[J]. 红外技术, 2022, 44(8): 853-862. http://hwjs.nvir.cn/article/id/7fc3a60d-61bb-454f-ad00-e925eeb54576
SUN B, ZHUGE W W, GAO Y X, et al. Infrared and visible image fusion based on latent low-rank representation[J]. Infrared Technology, 2022, 44(8): 853-862. http://hwjs.nvir.cn/article/id/7fc3a60d-61bb-454f-ad00-e925eeb54576
|
[13] |
LI H, WU X J, Kittler J. MDLatLRR: A novel decomposition method for infrared and visible image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4733-4746.
|
[14] |
TAN W, Tiwari P, Pandey H M, et al. Multimodal medical image fusion algorithm in the era of big data[J/OL]. Neural Computing and Applications, 2020, https://doi.org/10.1007/s00521-020-05173-2.
|
[15] |
WANG Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612.
|
[16] |
张蕾, 金龙旭, 韩双丽, 等. 采用非采样Contourlet变换与区域分类的红外和可见光图像融合[J]. 光学精密工程, 2015, 23(3): 810-818. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201503027.htm
Zhang L, Jing L X, Han S L, et al. Fusion of infrared and visual images based on non-sampled Contourlet transform and region classification[J]. Optics and Precision Engineering, 2015, 23(3): 810-818. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201503027.htm
|
[17] |
Alexander Toet. TNO Image Fusion Dataset[EB/OL]. 2014. https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029.
|
[18] |
Shreyamsha Kumar B K. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193-1204.
|
[19] |
LIU Y, CHEN X, CHENG J, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018.
|
[20] |
ZHOU Z, DONG M, XIE X, et al. Fusion of infrared and visible images for night-vision context enhancement[J]. Applied Optics, 2016, 55(23): 6480-6490.
|
[21] |
LI S, KANG X, HU J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.
|
[22] |
Burt P J, Adelson E H. The laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532-540.
|
[23] |
MA J, ZHOU Z, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
|
[24] |
ZHANG X, YE P, XIAO G. VIFB: A visible and infrared image fusion benchmark[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 104-105.
|
[1] | WANG Wenjin, KONG Jincheng, QI Wenbin, ZHANG Yang, SONG Linwei, WU Jun, ZHAO Wen, YU Jianyun, QIN Gang. Research Progress on Materials and Devices of HgCdTe p-on-n Double Layer Heterojunction Grown by VLPE[J]. Infrared Technology , 2024, 46(3): 233-245. |
[2] | YANG Chunzhang, QIN Gang, LI Yanhui, LI Da, KONG Jincheng. Research on Growth of M/L-wavelength Dual-band IR-MCT on CZT Substrate by MBE[J]. Infrared Technology , 2018, 40(1): 1-5. |
[3] | ZHOU Lianjun, HAN Fuzhong, BAI Piji, SHU Chang, SUN Hao, WANG Xiaojuan, LI Jinghui, ZOU Pengcheng, GUO Jianhua, WANG Qiongfang. Review of HOT MW Infrared Detector Using MCT Technology[J]. Infrared Technology , 2017, 39(2): 116-124. |
[4] | QIN Gang, LI Dongsheng, LI Xiongjun, LI Yanhui, WANG Xiangqian, YANG Yan, TIE Xiaoying, ZUO Dafan, BO Junxiang. Research on the Technique of in-situ p-on-n MWIR-MCT by MBE[J]. Infrared Technology , 2016, 38(10): 820-824. |
[5] | WANG Yi-feng, LI Pei-zhi, LIU Li-ming, WANG Dan-lin. Developments of Very Long Wavelength Mercury Cadmium Telluride Infrared Detectors[J]. Infrared Technology , 2012, 34(7): 373-382. DOI: 10.3969/j.issn.1001-8891.2012.07.001 |
[6] | Developments of Mercury Cadmium Telluride in Recent Years[J]. Infrared Technology , 2009, 31(8): 435-442. DOI: 10.3969/j.issn.1001-8891.2009.08.001 |
[7] | The Determination of Cadmium-Mercury Telluride Composition for Any Thickness by Infrared Transmission[J]. Infrared Technology , 2005, 27(1): 39-41. DOI: 10.3969/j.issn.1001-8891.2005.01.009 |
[8] | Measurement on Minority Carrier Lifetime of Mercury Cadmium Telluride Material by Microwave Photoconductivity Decay Method[J]. Infrared Technology , 2003, 25(6): 42-44,48. DOI: 10.3969/j.issn.1001-8891.2003.06.012 |
[9] | p+n Infrared Detectors by As Ion Implantation in HgCdTe[J]. Infrared Technology , 2002, 24(4): 46-48,26. DOI: 10.3969/j.issn.1001-8891.2002.04.012 |
[10] | The Surface Passivation of MCT Infrared Detectors[J]. Infrared Technology , 2001, 23(3): 9-12,15. DOI: 10.3969/j.issn.1001-8891.2001.03.003 |
1. |
王鑫,刘世光,张轶,赵旭豪,王娇. p-on-n型碲镉汞小间距探测器研究. 激光与红外. 2025(03): 395-398 .
![]() | |
2. |
王鑫,刘世光,张轶,王丹,宁提. p-on-n型10μm像元间距长波1280×1024红外探测器制备研究. 红外. 2024(11): 13-16 .
![]() |