Citation: | WANG Junyao, WANG Zhishe, WU Yuanyuan, CHEN Yanlin, SHAO Wenyu. Multi-Feature Adaptive Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2022, 44(6): 571-579. |
[1] |
Paramanandham N, Rajendiran K. Multi sensor image fusion for surveillance applications using hybrid image fusion algorithm[J]. Multimedia Tools and Applications, 2018, 77(10): 12405-12436. DOI: 10.1007/s11042-017-4895-3
|
[2] |
ZHANG Xingchen, YE Ping, QIAO Dan, et al. Object fusion tracking based on visible and infrared images: a comprehensive review[J]. Information Fusion, 2020, 63: 166-187. DOI: 10.1016/j.inffus.2020.05.002
|
[3] |
TU Zhengzheng, LI Zhun, LI Chenglong, et al. Multi-interactive dual- decoder for RGB-thermal salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 5678-5691. DOI: 10.1109/TIP.2021.3087412
|
[4] |
FENG Zhanxiang, LAI Jianhuang, XIE Xiaohua. Learning modality- specific representations for visible-infrared person re-identification[J]. IEEE Transactions on Image Processing, 2020, 29: 579-590. DOI: 10.1109/TIP.2019.2928126
|
[5] |
MO Yang, KANG Xudong, DUAN Puhong, et al. Attribute filter based infrared and visible image fusion[J]. Informantion Fusion, 2021, 75: 41-54. DOI: 10.1016/j.inffus.2021.04.005
|
[6] |
LI Hui, WU Xiaojun, Kittle J. MDLatLRR: a novel decomposition method for infrared and visible image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4733-4746. DOI: 10.1109/TIP.2020.2975984
|
[7] |
李辰阳, 丁坤, 翁帅, 等. 基于改进谱残差显著性图的红外与可见光图像融合[J]. 红外技术, 2020, 42(11): 1042-1047. http://hwjs.nvir.cn/article/id/6e57a6fb-ba92-49d9-a000-c00e7a933365
LI Chenyang, DING Kun, WENG Shuai, et al. Image fusion of infrared and visible images based on residual significance[J]. Infrared Technology, 2020, 42(11): 1042-1047. http://hwjs.nvir.cn/article/id/6e57a6fb-ba92-49d9-a000-c00e7a933365
|
[8] |
WANG Zhishe, YANG Fengbao, PENG Zhihao, et al. Multi-sensor image enhanced fusion algorithm based on NSST and top-hat transformation[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(23): 4184-4190. DOI: 10.1016/j.ijleo.2015.08.118
|
[9] |
LIU Yu, CHEN Xun, PENG Hu, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Informantion Fusion, 2017, 36: 191-207. DOI: 10.1016/j.inffus.2016.12.001
|
[10] |
WANG Zhishe; WU Yuanyuan; WANG Junyao, et al. Res2Fusion: infrared and visible image fusion based on dense Res2net and double non-local attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
|
[11] |
MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
|
[12] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
|
[13] |
Toet A. Computational versus psychophysical bottom-up image saliency: a comparative evaluation study[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(11): 2131-2146.
|
[14] |
LI Hui, WU Xiaojun. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. DOI: 10.1109/TIP.2018.2887342
|
[15] |
ZHANG Yu, LIU Yu, SUN Peng, et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118. DOI: 10.1016/j.inffus.2019.07.011
|
[16] |
WANG Zhishe, WANG Junyao, WU Yuanyuan, et al. UNFusion: a unified multi-scale densely connected network for infrared and visible image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 3360- 3374. DOI: 10.1109/TCSVT.2021.3109895
|
[17] |
MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. DOI: 10.1016/j.inffus.2018.09.004
|
[18] |
MA Jiayi, ZHANG Hao, SHAO Zhenfeng, et al. GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14.
|
[19] |
LI Hui, WU Xiaojun, Josef Kittler. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72-86. DOI: 10.1016/j.inffus.2021.02.023
|
[20] |
TOET A. TNO Image Fusion Datase[DB/OL]. [2014-04-26]. https://figshare.com/articles/TN Image Fusion Dataset/1008029.
|
[21] |
XU Han. Roadscene Database[DB/OL]. [2020-08-07]. https://github.com/hanna-xu/RoadScene.
|
[22] |
Ariffin S. OTCBVS Database[DB/OL]. [2007-06]. http://vcipl-okstate.org/pbvs/bench/.
|
[23] |
XU Han, MA Jiayi, JIANG Junjun, et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518. DOI: 10.1109/TPAMI.2020.3012548
|
[24] |
Aslantas V, Bendes E. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2008(2): 1-28.
|
[25] |
LIU Zheng, Blasch E, XUE Zhiyun, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34: 94-109.
|
[26] |
RAO Yunjiang. In-fibre bragg grating sensors[J]. Measurement Science and Technology, 1997(8): 355-375.
|
[27] |
Aslantas V, Bendes E. A new image quality metric for image fusion: The sum of the correlations of differences[J]. AEU-Int. J. Electron. C. , 2015, 69: 1890-1896. DOI: 10.1016/j.aeue.2015.09.004
|
[28] |
HAN Yu, CAI Yunze, CAO Yin, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013(14): 127-135.
|
[29] |
MA Kede, ZENG Kai, WANG Zhou. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Trans. Image Process, 2015, 24: 3345-3356. DOI: 10.1109/TIP.2015.2442920
|
[1] | ZHOU Shikai, LI Zhengqiang, YAO Qian, WU Wenfei, XIE Yanqing, FAN Cheng. A Simplified Radiative Transfer Calculation Scheme for Transmittance in Satellite Thermal Infrared Remote Sensing[J]. Infrared Technology , 2025, 47(3): 272-280. |
[2] | TIAN Hao, HU Haifei, CAI Sheng, WANG Jiulong, XU Wei. Detectability Analysis of Low Earth Orbital Infrared Detectors for Near Space Hypersonic Targets[J]. Infrared Technology , 2024, 46(6): 617-624. |
[3] | WANG Yi, WANG Hao, WEI Ziyu, WANG Xue. Test of Infrared Radiation Characteristic for Aero-engines Based on Spectral Radiometer[J]. Infrared Technology , 2023, 45(3): 292-297. |
[4] | SONG Minmin, WANG Shuang, LYU Tao, YUAN Yujian. A Method for Infrared Dim Small Target Detection in Complex Scenes of Sky and Ground[J]. Infrared Technology , 2018, 40(10): 996-1001. |
[5] | ZHAO Zhijun, XU Fangyu, WEI Chaoqun, YANG Kun. Study on Measurement Method for Total Infrared Atmospheric Transmittance[J]. Infrared Technology , 2018, 40(7): 718-722. |
[6] | YANG Hui, ZHANG Baohui, SHA Tao, WANG Dongjing, WANG Runyu. Detection of Small Infrared Moving Targets Under Ground-sky Background[J]. Infrared Technology , 2018, 40(5): 462-467. |
[7] | KANG Lizhu, ZHAO Jinsong, ZHOU Qian, NI Kai, TANG Han, ZHAO Qiang, TAO Liang. Research on Infrared Signature for Remotely Detection from the Nose of Aircrafts[J]. Infrared Technology , 2017, 39(4): 365-371. |
[8] | CHEN Fang-fang, GENG Rui, LYU Yong. Research on the Transmittance Model of Laser Infrared Atmospheric Transmission[J]. Infrared Technology , 2015, (6): 496-501. |
[9] | ZHOU Xia, CHEN Qian, QIAN Wei-xian, GU Guo-hua, XU Fu-yuan. Research on the Algorithm of Dim and Small Targets Detection on the Ground[J]. Infrared Technology , 2013, (6): 334-338. |
[10] | ZHOU Guo-hui, LIU Xiang-wei, XU ji-wei. A Math Model of Calculate the Atmospheric Transmittance Of Infrared Radiation[J]. Infrared Technology , 2008, 30(6): 331-334. DOI: 10.3969/j.issn.1001-8891.2008.06.006 |
1. |
高于山,邓瑛,张菁. 临近空间光学载荷设计关键指标与技术综述. 空天技术. 2023(03): 88-93 .
![]() | |
2. |
马俊,朱猛,王才喜,史文杰. 临近空间光电探测技术与发展展望. 空天技术. 2022(02): 85-96 .
![]() |