Citation: | LI Wei, TIAN Shishun, LIU Guangli, ZOU Wenbin. Structural Similarity Fusion of Infrared and Visible Image in the M-SWF Domain[J]. Infrared Technology , 2024, 46(3): 280-287. |
[1] |
MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications: a survey [J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004。
|
[2] |
ZHAO Z, XU S, ZHANG C, et al. Bayesian fusion for infrared and visible images[J]. Signal Processing, 2020, 177: 165-168. DOI: 10.1016/ j.sigpro.2020.107734
|
[3] |
HUAN Kewei, LI Xiangyang, CAO Yutong, et al. Infrared and visible image fusion of convolutional neural network and NSST[J]. Infrared and Laser Engineering, 2022, 51(3): 20210139. DOI: 10.3788/IRLA20210139.
|
[4] |
CHENG Boyang, LI Ting, WANG Yulin. Fusion of infrared and visible light images based on visual saliency weighting and maximum gradient singular value[J]. Chinese Optics, 2022, 15(4): 675-688. DOI: 10.37188/CO.2022-0124
|
[5] |
李威, 李忠民. 一种基于EASSF的红外与可见光图像视觉保真度融合[J]. 红外技术, 2022, 44(7): 686-692. http://hwjs.nvir.cn/article/id/2c60451f-34b1-47a3-bab6-629774a73a0c
LI Wei, LI Zhongmin. Visual fidelity fusion of infrared and visible image using edge-aware smoothing-sharpening filter[J]. Infrared Technology, 2022, 44(7): 686-692. http://hwjs.nvir.cn/article/id/2c60451f-34b1-47a3-bab6-629774a73a0c
|
[6] |
李永萍, 杨艳春, 党建武, 等. 基于变换域VGGNet19的红外与可见光图像融合[J]. 红外技术, 2022, 44(12): 1293-1300. http://hwjs.nvir.cn/article/id/48843dec-a48b-468f-b743-4a00c345f406
LI Yongping, YANG Yanchun, DANG Jianwu, et al. Infrared and visible image fusion based on transform domain VGGNet19[J]. Infrared Technology, 2022, 44(12): 1293-1300. http://hwjs.nvir.cn/article/id/48843dec-a48b-468f-b743-4a00c345f406
|
[7] |
雷大江, 杜加浩, 张莉萍, 等. 联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法[J]. 电子与信息学报, 2022, 44(1): 237-244. Doi: 10.11999/JEIT200792.
LEI Dajiang, DU Jiahao, ZHANG Liping, et al. Multi-stream architecture and multi-scale convolutional neural network for remote sensing image fusion [J]. Journal of Electronics & Information Technology, 2022, 44(1): 237-244. Doi: 10.11999/JEIT200792.
|
[8] |
马梁, 苟于涛, 雷涛, 等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): 49-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202204005.htm
MA Liang, GOU Yutao, LEI Tao, et al. Small object detection based on multi-scale feature fusion using remote sensing images[J]. Opto-Electron Eng, 2022, 49(4): 49-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202204005.htm
|
[9] |
钱金卓, 马骏, 李峰, 等. 面向CMOS遥感相机的多曝光图像融合方法[J]. 遥感信息, 2022, 37(4): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX202204008.htm
QIAN Jinzhuo, MA Jun, LI Feng, et al. Multi-exposure image fusion method for CMOS remote sensing camera [J]. Remote Sensing Information, 2022, 37(4): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX202204008.htm
|
[10] |
LI Shutao, KANG Xudong, HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. Doi: 10.1109/TIP.2013.2244222.
|
[11] |
Shreyamsha Kumar B K. Image fusion based on pixel significance using cross bilateral filter[J]. Signal Image Video Process, 2015, 9(5): 1193-1204. Doi: 10.1007/s11760-013-0556-9.
|
[12] |
ZHAN K, XIE Yuange, MIN Yufang. Fast filtering image fusion[J]. J. Electron. Imaging, 2017, 26(6): 063004. Doi: 10.1117/1.JEI.26.6.063004.
|
[13] |
LI Hui, WU Xiaojun, Tariq S Durrani. Infrared and visible image fusion with ResNet and zero-phase component analysis[J]. Infrared Physics & Technology, 2019, 102: 1030390. Doi: 10.1016/j.infrared.2019.-103039.
|
[14] |
TAN Wei, Thitn W, XIANG P, et al. Multi-modal brain image fusion based on multi-level edge-preserving filtering[J]. Biomedical Signal Processing and Control, 2021, 64: 102280. Doi: 10.1016/j. bspc.2020.102280.
|
[15] |
YIN Hui, GONG Yuanhao, QIU Guoping. Side window guided filtering[J]. Signal Process, 2019, 165: 315-330. Doi: 10.1016/j.sigpro. 2019.07.026.
|
[16] |
LI Xiaosong, ZHOU Fuqiang, TAN Haishu, et al. Multimodal medical image fusion based on joint bilateral filter and local gradient energy[J]. Information Sciences, 2021, 569: 302-325.
|
[17] |
LI Hui, WU Xiaojun. DenseFuse: a fusion approach to infrared and visible images [J]. IEEE Trans. Image Process, 2019, 28(5): 2614-2623. Doi: 10.1109/TIP.2018.2887342.
|
[18] |
Toet A. TNO Image Fusion Dataset[EB/OL]. [2022-10-30]. http://figshare.com/articles/-TNO_Image_Fusion_Dataset/1008029.
|
[19] |
Xydeas C S, Petrovic V. Objective image fusion performance measure [J]. Electron. Lett, 2000, 36(4): 308-309. Doi: 10.1109/ICCV.2005.175.
|
[20] |
Aslantas V, Bendes E. A new image quality metric for image fusion: the sum of the correlations of differences[J]. AEU- Int. J. Electron. Commune, 2015, 69(12): 1890-1896. Doi: 10.1016/j.aeue.2015.09.004.
|