WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178.
Citation: WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178.

Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks

More Information
  • Received Date: May 28, 2021
  • Revised Date: July 19, 2021
  • At present, deep learning-based fusion methods rely only on convolutional kernels to extract local features, but the limitations of single-scale networks, convolutional kernel size, and network depth cannot provide a sufficient number of multi-scale and global image characteristics. Therefore, here we propose an infrared and visible image fusion method using attention-based generative adversarial networks. This study uses a generator consisting of an encoder and decoder, and two discriminators. The multi-scale module and channel self-attention mechanism are designed in the encoder, which can effectively extract multi-scale features and establish the dependency between the long ranges of feature channels, thus enhancing the global characteristics of multi-scale features. In addition, two discriminators are constructed to establish an adversarial relationship between the fused image and the source images to preserve more detailed information. The experimental results demonstrate that the proposed method is superior to other typical methods in both subjective and objective evaluations.
  • [1]
    MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [2]
    LI S, KANG X, FANG L, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. DOI: 10.1016/j.inffus.2016.05.004
    [3]
    LIU Y, CHEN X, WANG Z, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion, 2018, 42: 158-173. DOI: 10.1016/j.inffus.2017.10.007
    [4]
    LI S, YANG B, HU J. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 2011, 12(2): 74-84. DOI: 10.1016/j.inffus.2010.03.002
    [5]
    ZHANG Q, LIU Y, Rick S Blum, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review[J]. Information Fusion, 2018, 40: 57-75. DOI: 10.1016/j.inffus.2017.05.006
    [6]
    ZHANG Xiaoye, MA Yong, ZHANG Ying, et al. Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2017, 34(8): 1400-1410.
    [7]
    YU L, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. DOI: 10.1016/j.inffus.2014.09.004
    [8]
    HAN J, Pauwels E J, P De Zeeuw. Fast saliency-aware multimodality image fusion[J]. Neurocomputing, 2013, 111: 70-80. DOI: 10.1016/j.neucom.2012.12.015
    [9]
    YIN Haitao. Sparse representation with learned multiscale dictionary for image fusion[J]. Neurocomputing, 2015, 148: 600-610. DOI: 10.1016/j.neucom.2014.07.003
    [10]
    WANG Zhishe, YANG Fengbao, PENG Zhihao, et al. Multi-sensor image enhanced fusion algorithm based on NSST and top-hat transformation[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(23): 4184-4190. DOI: 10.1016/j.ijleo.2015.08.118
    [11]
    CUI G, FENG H, XU Z, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209. DOI: 10.1016/j.optcom.2014.12.032
    [12]
    LI Q, LU L, LI Z, et al. Coupled GAN with relativistic discriminators for infrared and visible images fusion[J]. IEEE Sensors Journal, 2021, 21(6): 7458-7467. DOI: 10.1109/JSEN.2019.2921803
    [13]
    LIU Y, CHEN X, CHENG J, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018. DOI: 10.1142/S0219691318500182
    [14]
    LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 28(5): 2614-2523. DOI: 10.1109/TIP.2018.2887342
    [15]
    XU H, MA J, JIANG J, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(1): 502-518.
    [16]
    HOU R. VIF-Net: an unsupervised framework for infrared and visible image fusion[J]. IEEE Transactions on Computational Imaging, 2020, 6: 640-651. DOI: 10.1109/TCI.2020.2965304
    [17]
    HUI L A, XJW A, JK B. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72-86. DOI: 10.1016/j.inffus.2021.02.023
    [18]
    MA J, WEI Y, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. DOI: 10.1016/j.inffus.2018.09.004
    [19]
    JM A, Pl A, WEI Y A, et al. Infrared and visible image fusion via detail preserving adversarial learning[J]. Information Fusion, 2020, 54: 85-98. DOI: 10.1016/j.inffus.2019.07.005
    [20]
    MA J, XU H, JIANG J, et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980-4995. DOI: 10.1109/TIP.2020.2977573
    [21]
    GAO S, CHENG M M, ZHAO K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. DOI: 10.1109/TPAMI.2019.2938758
    [22]
    FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 2020: DOI: 10.1109/cvpr.2019.00326.
    [23]
    Nencini F, Garzelli A, Baronti S, et al. Alparone, remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156. DOI: 10.1016/j.inffus.2006.02.001
    [24]
    LIU Y, WANG Z. Simultaneous image fusion and denoising with adaptive sparse representation[J]. Image Processing Iet. , 2014, 9(5): 347-357.
    [25]
    MA J, ZHOU Z, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
    [26]
    YU Z A, YU L B, PENG S C, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118. DOI: 10.1016/j.inffus.2019.07.011
  • Related Articles

    [1]LIAO Guangfeng, GUAN Zhiwei, CHEN Qiang. An Improved Dual Discriminator Generative Adversarial Network Algorithm for Infrared and Visible Image Fusion[J]. Infrared Technology , 2025, 47(3): 367-375.
    [2]YUAN Hongchun, ZHANG Bo, CHENG Xin. Underwater Image Enhancement Algorithm Combining Transformer and Generative Adversarial Network[J]. Infrared Technology , 2024, 46(9): 975-983.
    [3]LI Li, YI Shi, LIU Xi, CHENG Xinghao, WANG Cheng. Infrared Image Deblurring Based on Dense Residual Generation Adversarial Network[J]. Infrared Technology , 2024, 46(6): 663-671.
    [4]DI Jing, REN Li, LIU Jizhao, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Three-branch Adversarial Learning and Compensation Attention Mechanism[J]. Infrared Technology , 2024, 46(5): 510-521.
    [5]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [6]WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177.
    [7]FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943.
    [8]LI Yunhong, LIU Yudong, SU Xueping, LUO Xuemin, YAO Lan. Review of Infrared and Visible Image Registration[J]. Infrared Technology , 2022, 44(7): 641-651.
    [9]HUANG Mengtao, GAO Na, LIU Bao. Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network[J]. Infrared Technology , 2022, 44(1): 41-46.
    [10]LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574.

Catalog

    Article views (182) PDF downloads (68) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return