JIN Dan, LIU Xiaoguang, SHI Gang, SONG Renping, ZU Mingxia. Temperature Compensation for Infrared Detection of Carbon Dioxide Concentration[J]. Infrared Technology , 2023, 45(6): 671-677.
Citation: JIN Dan, LIU Xiaoguang, SHI Gang, SONG Renping, ZU Mingxia. Temperature Compensation for Infrared Detection of Carbon Dioxide Concentration[J]. Infrared Technology , 2023, 45(6): 671-677.

Temperature Compensation for Infrared Detection of Carbon Dioxide Concentration

More Information
  • Received Date: May 23, 2022
  • Revised Date: May 31, 2022
  • Carbon dioxide (CO2) concentration monitoring is an important basis for carbon peaking and carbon neutralization. As one of the most widely used technologies in the field of greenhouse gas measurement, non-dispersive infrared (NDIR) detection technology focuses on effectively suppressing temperature drift and ensuring the stability and reliability of long-term monitoring data. The experimental results showed that the light power of the light source, strength of the gas absorption line, and central wavelength of the filter were easily affected by the ambient temperature. In this study, a temperature compensation method for infrared gas detection is proposed, and an analyzer for infrared detection of atmospheric carbon dioxide concentration is developed. Selecting 4.26 μm as the CO2 gas absorption line with the central wavelength, the temperature compensation experiment of the analyzer was studied using the high and low temperature test chambers. A standard CO2 gas concentration was configured and concentration calibration experimental research was conducted on the analyzer. The measurement results showed that the infrared CO2 gas analyzer had the advantages of stable concentration measurement, significant temperature compensation, fast response, and a wide application range. The infrared CO2 gas analyzer provides reliable data support for terrestrial ecosystem carbon budget monitoring and other fields
  • [1]
    何保山, 冯良东, 周仲柏. 用于实时动态检测多组份气体的电化学传感器系统的设计与实现[J]. 传感技术学报, 2003(3): 309-312, 317. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS200303015.htm

    HE Baoshan, FENG Liangdong, ZHOU Zhongbo. Design and implementation of the electrochemical multi-component gas sensor system for real-time and dynamic detection[J]. Chinese Journal of Sensors and Actuators, 2003(3): 309-312, 317. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS200303015.htm
    [2]
    吕天玲, 于静, 刘思海, 等. 工作场所空气中二氧化碳的气相色谱直接测定方法[J]. 工业卫生与职业病, 2017, 43(5): 381-382. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ201705020.htm

    LV Tianling, YU Jing, LIU Sihai, et al. Direct determination of carbon dioxide in the air of workplace by gas chromatography[J]. Industrial Hygiene and Occupational Diseases, 2017, 43(5): 381-382. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ201705020.htm
    [3]
    倪素琳, 蒋佳洪, 邢颖, 等. 气相色谱TCD检测CO2的研究[J]. 环境科学与技术, 2020, 43(S2): 134-137. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2020S2020.htm

    NI Sulin, JIANG Jiahong, XING Ying, et al. Research on determination of carbon dioxide by gas chromatography based on thermal conductivity detector[J]. Environmental Science & Technology, 2020, 43(S2): 134-137. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2020S2020.htm
    [4]
    罗淑芹. 基于TDLAS的CO2气体检测分析系统[D]. 哈尔滨: 哈尔滨工业大学, 2013: 3-4.

    LUO Shuqin. Detection and Analysis System for CO2 Gas Based on TDLAS[D]. Harbin: Harbin Institute of Technology, 2013: 3-4.
    [5]
    王彪, 范兴龙, 戴童欣, 等. 基于红外光谱技术的VCSEL型二氧化碳气体检测系统的研制[J]. 激光杂志, 2020, 41(8): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202008004.htm

    WANG Biao, FAN Xinglong, DAI Tongxin, et al. Development of VCSEL based carbon dioxide detecting system[J]. Laser Journal, 2020, 41(8): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202008004.htm
    [6]
    查玲玲, 王薇, 谢宇, 等. 利用便携式FTIR光谱仪研究环境大气中CO2浓度变化[J]. 光谱学与光谱分析, 2022, 42(4): 1036-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202204006.htm

    ZHA Lingling, WANG Wei, XIE Yu, et al. Observation of variations of ambient CO2 using portable FTIR spectrometer[J]. Spectroscopy and Spectral Analysis, 2022, 42(4): 1036-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202204006.htm
    [7]
    袁博, 袁宇鹏, 张祖伟, 等. 基于差分吸收检测技术的非分散红外CO2呼吸气体传感器[J]. 重庆邮电大学学报(自然科学版), 2021, 33(1): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CASH202101016.htm

    YUAN Bo, YUAN Yupeng, ZHANG Zuwei, et al. Non-dispersive infrared CO2 breathing gas sensor based on differential absorption detection technology[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2021, 33(1): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CASH202101016.htm
    [8]
    HODGKINSON J, SMITH R, HO W S J, et al. A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 μm[J]. The International Society for Optical Engineering, 2012, 8439: 36.
    [9]
    常敏, 刘奔, 张学典. 红外CO2浓度检测中的温度补偿方法研究[J]. 仪表技术与传感器, 2017(2): 93-95, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201702024.htm

    CHANG Min, LIU Ben, ZHANG Xuedian. Research on temperature compensation for CO2 concentration measurement[J]. Instrument Technique and Sensor, 2017(2): 93-95, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201702024.htm
    [10]
    李军. 基于数值迭代的非色散红外二氧化碳高温补偿方法[J]. 仪表技术与传感器, 2017(4): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201704025.htm

    LI Jun. High-temperature compensation method for non-dispersive infrared carbon dioxide based on numerical iteration[J]. Instrument Technique and Sensor, 2017(4): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201704025.htm
    [11]
    HU Y, LU S, GUAN Y. Improvable method for Halon 1301 concentration measurement based on infrared absorption[J]. Infrared Physics & Technology, 2015, 72: 122-126.
    [12]
    YUAN W, LU S, GUAN Y, et al. Open-path Halon 1301 NDIR sensor with temperature compensation[J]. Infrared Physics & Technology, 2019, 97: 129-134.
    [13]
    SHEN C H, YEAH J H. Long term stable ∆-Σ NDIR technique based on temperature compensation[J]. Applied Sciences, 2019, 9(2): 309.
    [14]
    陆同兴, 路轶群. 激光光谱技术原理及应用[M]. 2版: 合肥: 中国科学技术大学出版社, 2009: 123.

    LU T X, LU Y Q. Principle and Application of Laser Spectroscopy Technology[M]. 2nd ed. Hefei: University of Science and Technology of China Press, 2009: 123.
    [15]
    TAN Q L, TANG L Ch, YANG M L, et al. Three-gas detection system with IR optical sensor based on NDIR technology[J]. Optics & Lasers in Engineering, 2015, 74: 103-108.
    [16]
    ROBERT L, WALT K. Complete gas sensor circuit using nondispersive infrared (NDIR)[J/OL]. Analog Dialogue, 2016, 50: https://www.analog.com/en/analog-dialogue/articles/complete-gas-sensor-circuit-using-nondispersive-infrared.html?ivk_sa=1024320u.
    [17]
    GORDON I E, ROTHMAN L S, HILL C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.
    [18]
    ROTHMAN L S, JACQUEMART D, BARBE A, et al. The HITRAN 2004 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96(2): 139-204.
    [19]
    刘红梅. 温度对非分光红外气体分析仪信噪比影响研究[J]. 仪表技术与传感器, 2015(4): 49-50, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201504017.htm

    LIU H M. Temperature effect on signal to noise ratio of NDIR gas analyzer[J]. Instrument Technique and Sensor, 2015(4): 49-50, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201504017.htm
    [20]
    牛萍娟, 程峥, 田海涛, 等. 非色散红外CO2传感器温度补偿模型研究[J]. 仪表技术与传感器, 2019(8): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201908007.htm

    NIU Pingjuan, CHENG Zheng, TIAN Haitao, et al. Research on temperature compensation model of non-dispersive infrared CO2 sensor[J]. Instrument Technique and Sensor, 2019(8): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201908007.htm
  • Related Articles

    [1]LIU Wenfang, LEI Jin, WU Duo. A Temperature Compensation and Calibration Method for Thermal Infrared Array Sensor[J]. Infrared Technology , 2024, 46(9): 1092-1098.
    [2]LI Yaqing, ZUO Jianing, LI Xiaolu, ZHOU Shengtao, CHU Zhujun, DU Peide, WANG Guangfan. Research on Temperature Compensation of Image Intensifier Based on Auto-gated Power Supply[J]. Infrared Technology , 2023, 45(10): 1126-1131.
    [3]XIAO Xiongliang, CHEN Changming. Establishment and Verification of Multivariate Linear Regression Model for Prediction of Ethanol Concentration[J]. Infrared Technology , 2021, 43(12): 1228-1233.
    [4]YANG Qingzhi, WANG Yuxiang, XU Hong. Design of Portable Infrared thermometer and Temperature Compensation Technology[J]. Infrared Technology , 2021, 43(6): 597-606.
    [5]DU Yuxi, HU Zhenqi, GE Yunhang, HUANG Hua, CHEN Ruitao, WANG Yong, WANG Zhimeng. Distance Influence and Compensation of Infrared Temperature Measurement with Different Intensity Heat Sources[J]. Infrared Technology , 2019, 41(10): 976-981.
    [6]LI Dongdong, HU Mingyong, WU Haiyan, ZHAO Jinbiao. The Design of Compensation Mechanism at Low Temperature of -213℃[J]. Infrared Technology , 2016, 38(8): 659-665.
    [7]MAO Qibo, YU Zhenhong, WANG Xiangchun. IR Gas Sensor Temperature Compensation Based on Improved PSO Algorithm[J]. Infrared Technology , 2016, 38(6): 499-504.
    [8]WANG Yan-lei, LUAN Mei-sheng, YU Tong-yan. Calibration of High-temperature Flame Measurement Device[J]. Infrared Technology , 2009, 31(7): 399-402. DOI: 10.3969/j.issn.1001-8891.2009.07.007
    [9]WANG Min, SHEN Wei, ZHANG Zeng-Jie, CHEN Bin. A New Dual-Temperature Compensation Method for the Drifting of Uncooled IRFPA Image[J]. Infrared Technology , 2007, 29(6): 352-356. DOI: 10.3969/j.issn.1001-8891.2007.06.011
    [10]A Concentration Measurement Instrument of Carbon Dioxide Using Light-Emitting Diode[J]. Infrared Technology , 2003, 25(5): 89-92. DOI: 10.3969/j.issn.1001-8891.2003.05.024
  • Cited by

    Periodical cited type(5)

    1. 戴皓升,孔明,姚为方,钱靖,马大卫,周健,吕文君,苏阳,李鲲. 燃煤电厂碳排放长期在线监测数据对比及应用分析. 电力科技与环保. 2025(01): 59-68 .
    2. 颜培宇,张海庆,张清,张振. 基于双通道检测技术的非分光红外CO_2传感器设计与研究. 仪表技术与传感器. 2024(04): 6-10 .
    3. 马建华,刘金锋,周永章,郑益军,陆可飞,林星雨,王汉雨,张灿. 面向地质封存及其泄漏风险评价的CO_2物联网在线监测. 地学前缘. 2024(04): 139-146 .
    4. 吴文杰. 非色散红外CO_2传感器温度补偿研究. 激光与红外. 2024(06): 935-942 .
    5. 王春光,李琳琳,王逸飞,代伟平. 油井H_2S及CO_2一体化传感器在线测量装置设计. 仪器仪表标准化与计量. 2024(06): 22-24 .

    Other cited types(2)

Catalog

    Article views (219) PDF downloads (75) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return