Citation: | JIN Dan, LIU Xiaoguang, SHI Gang, SONG Renping, ZU Mingxia. Temperature Compensation for Infrared Detection of Carbon Dioxide Concentration[J]. Infrared Technology , 2023, 45(6): 671-677. |
[1] |
何保山, 冯良东, 周仲柏. 用于实时动态检测多组份气体的电化学传感器系统的设计与实现[J]. 传感技术学报, 2003(3): 309-312, 317. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS200303015.htm
HE Baoshan, FENG Liangdong, ZHOU Zhongbo. Design and implementation of the electrochemical multi-component gas sensor system for real-time and dynamic detection[J]. Chinese Journal of Sensors and Actuators, 2003(3): 309-312, 317. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS200303015.htm
|
[2] |
吕天玲, 于静, 刘思海, 等. 工作场所空气中二氧化碳的气相色谱直接测定方法[J]. 工业卫生与职业病, 2017, 43(5): 381-382. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ201705020.htm
LV Tianling, YU Jing, LIU Sihai, et al. Direct determination of carbon dioxide in the air of workplace by gas chromatography[J]. Industrial Hygiene and Occupational Diseases, 2017, 43(5): 381-382. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ201705020.htm
|
[3] |
倪素琳, 蒋佳洪, 邢颖, 等. 气相色谱TCD检测CO2的研究[J]. 环境科学与技术, 2020, 43(S2): 134-137. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2020S2020.htm
NI Sulin, JIANG Jiahong, XING Ying, et al. Research on determination of carbon dioxide by gas chromatography based on thermal conductivity detector[J]. Environmental Science & Technology, 2020, 43(S2): 134-137. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2020S2020.htm
|
[4] |
罗淑芹. 基于TDLAS的CO2气体检测分析系统[D]. 哈尔滨: 哈尔滨工业大学, 2013: 3-4.
LUO Shuqin. Detection and Analysis System for CO2 Gas Based on TDLAS[D]. Harbin: Harbin Institute of Technology, 2013: 3-4.
|
[5] |
王彪, 范兴龙, 戴童欣, 等. 基于红外光谱技术的VCSEL型二氧化碳气体检测系统的研制[J]. 激光杂志, 2020, 41(8): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202008004.htm
WANG Biao, FAN Xinglong, DAI Tongxin, et al. Development of VCSEL based carbon dioxide detecting system[J]. Laser Journal, 2020, 41(8): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202008004.htm
|
[6] |
查玲玲, 王薇, 谢宇, 等. 利用便携式FTIR光谱仪研究环境大气中CO2浓度变化[J]. 光谱学与光谱分析, 2022, 42(4): 1036-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202204006.htm
ZHA Lingling, WANG Wei, XIE Yu, et al. Observation of variations of ambient CO2 using portable FTIR spectrometer[J]. Spectroscopy and Spectral Analysis, 2022, 42(4): 1036-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202204006.htm
|
[7] |
袁博, 袁宇鹏, 张祖伟, 等. 基于差分吸收检测技术的非分散红外CO2呼吸气体传感器[J]. 重庆邮电大学学报(自然科学版), 2021, 33(1): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CASH202101016.htm
YUAN Bo, YUAN Yupeng, ZHANG Zuwei, et al. Non-dispersive infrared CO2 breathing gas sensor based on differential absorption detection technology[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2021, 33(1): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CASH202101016.htm
|
[8] |
HODGKINSON J, SMITH R, HO W S J, et al. A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 μm[J]. The International Society for Optical Engineering, 2012, 8439: 36.
|
[9] |
常敏, 刘奔, 张学典. 红外CO2浓度检测中的温度补偿方法研究[J]. 仪表技术与传感器, 2017(2): 93-95, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201702024.htm
CHANG Min, LIU Ben, ZHANG Xuedian. Research on temperature compensation for CO2 concentration measurement[J]. Instrument Technique and Sensor, 2017(2): 93-95, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201702024.htm
|
[10] |
李军. 基于数值迭代的非色散红外二氧化碳高温补偿方法[J]. 仪表技术与传感器, 2017(4): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201704025.htm
LI Jun. High-temperature compensation method for non-dispersive infrared carbon dioxide based on numerical iteration[J]. Instrument Technique and Sensor, 2017(4): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201704025.htm
|
[11] |
HU Y, LU S, GUAN Y. Improvable method for Halon 1301 concentration measurement based on infrared absorption[J]. Infrared Physics & Technology, 2015, 72: 122-126.
|
[12] |
YUAN W, LU S, GUAN Y, et al. Open-path Halon 1301 NDIR sensor with temperature compensation[J]. Infrared Physics & Technology, 2019, 97: 129-134.
|
[13] |
SHEN C H, YEAH J H. Long term stable ∆-Σ NDIR technique based on temperature compensation[J]. Applied Sciences, 2019, 9(2): 309.
|
[14] |
陆同兴, 路轶群. 激光光谱技术原理及应用[M]. 2版: 合肥: 中国科学技术大学出版社, 2009: 123.
LU T X, LU Y Q. Principle and Application of Laser Spectroscopy Technology[M]. 2nd ed. Hefei: University of Science and Technology of China Press, 2009: 123.
|
[15] |
TAN Q L, TANG L Ch, YANG M L, et al. Three-gas detection system with IR optical sensor based on NDIR technology[J]. Optics & Lasers in Engineering, 2015, 74: 103-108.
|
[16] |
ROBERT L, WALT K. Complete gas sensor circuit using nondispersive infrared (NDIR)[J/OL]. Analog Dialogue, 2016, 50: https://www.analog.com/en/analog-dialogue/articles/complete-gas-sensor-circuit-using-nondispersive-infrared.html?ivk_sa=1024320u.
|
[17] |
GORDON I E, ROTHMAN L S, HILL C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.
|
[18] |
ROTHMAN L S, JACQUEMART D, BARBE A, et al. The HITRAN 2004 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96(2): 139-204.
|
[19] |
刘红梅. 温度对非分光红外气体分析仪信噪比影响研究[J]. 仪表技术与传感器, 2015(4): 49-50, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201504017.htm
LIU H M. Temperature effect on signal to noise ratio of NDIR gas analyzer[J]. Instrument Technique and Sensor, 2015(4): 49-50, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201504017.htm
|
[20] |
牛萍娟, 程峥, 田海涛, 等. 非色散红外CO2传感器温度补偿模型研究[J]. 仪表技术与传感器, 2019(8): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201908007.htm
NIU Pingjuan, CHENG Zheng, TIAN Haitao, et al. Research on temperature compensation model of non-dispersive infrared CO2 sensor[J]. Instrument Technique and Sensor, 2019(8): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201908007.htm
|
[1] | LIU Wenfang, LEI Jin, WU Duo. A Temperature Compensation and Calibration Method for Thermal Infrared Array Sensor[J]. Infrared Technology , 2024, 46(9): 1092-1098. |
[2] | LI Yaqing, ZUO Jianing, LI Xiaolu, ZHOU Shengtao, CHU Zhujun, DU Peide, WANG Guangfan. Research on Temperature Compensation of Image Intensifier Based on Auto-gated Power Supply[J]. Infrared Technology , 2023, 45(10): 1126-1131. |
[3] | XIAO Xiongliang, CHEN Changming. Establishment and Verification of Multivariate Linear Regression Model for Prediction of Ethanol Concentration[J]. Infrared Technology , 2021, 43(12): 1228-1233. |
[4] | YANG Qingzhi, WANG Yuxiang, XU Hong. Design of Portable Infrared thermometer and Temperature Compensation Technology[J]. Infrared Technology , 2021, 43(6): 597-606. |
[5] | DU Yuxi, HU Zhenqi, GE Yunhang, HUANG Hua, CHEN Ruitao, WANG Yong, WANG Zhimeng. Distance Influence and Compensation of Infrared Temperature Measurement with Different Intensity Heat Sources[J]. Infrared Technology , 2019, 41(10): 976-981. |
[6] | LI Dongdong, HU Mingyong, WU Haiyan, ZHAO Jinbiao. The Design of Compensation Mechanism at Low Temperature of -213℃[J]. Infrared Technology , 2016, 38(8): 659-665. |
[7] | MAO Qibo, YU Zhenhong, WANG Xiangchun. IR Gas Sensor Temperature Compensation Based on Improved PSO Algorithm[J]. Infrared Technology , 2016, 38(6): 499-504. |
[8] | WANG Yan-lei, LUAN Mei-sheng, YU Tong-yan. Calibration of High-temperature Flame Measurement Device[J]. Infrared Technology , 2009, 31(7): 399-402. DOI: 10.3969/j.issn.1001-8891.2009.07.007 |
[9] | WANG Min, SHEN Wei, ZHANG Zeng-Jie, CHEN Bin. A New Dual-Temperature Compensation Method for the Drifting of Uncooled IRFPA Image[J]. Infrared Technology , 2007, 29(6): 352-356. DOI: 10.3969/j.issn.1001-8891.2007.06.011 |
[10] | A Concentration Measurement Instrument of Carbon Dioxide Using Light-Emitting Diode[J]. Infrared Technology , 2003, 25(5): 89-92. DOI: 10.3969/j.issn.1001-8891.2003.05.024 |