Citation: | SHEN Yu, LIANG Li, WANG Hailong, YAN Yuan, LIU Guanghui, SONG Jing. Infrared and Visible Image Fusion Based on N-RGAN Model[J]. Infrared Technology , 2023, 45(9): 897-906. |
[1] |
HUI L, XIAO J W. Dense Fuse: a fusion approach to infrared and visible images[J]. IEEE Trans. Image Processing, 2019, 28(5): 2614-2623. DOI: 10.1109/TIP.2018.2887342
|
[2] |
HE G Q, JI J Q, DONG D D, et al. Infrared and visible image fusion method by using hybrid representation learning[J]. IEEE Geosci. Remote Sensing Lett, 2019, 16(11): 1796-1800. DOI: 10.1109/LGRS.2019.2907721
|
[3] |
沈英, 黄春红, 黄峰, 等. 红外与可见光图像融合技术的研究进展[J]. 红外与激光工程, 2021, 50(9): 152-169. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202109014.htm
SHEN Y, HUANG C H, HUANG F, et al. Research progress of infrared and visible image fusion technology[J]. Infrared and Laser Engineering, 2021, 50(9): 152-169. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202109014.htm
|
[4] |
廖宁, 陈怡然. 红外和可见光图像高效融合的人工智能技术研究[J]. 激光杂志, 2022, 43(3): 109-113. DOI: 10.14016/j.cnki.jgzz.2022.03.109
LIAO N, CHEN Y R. Research on artificial intelligence technology for efficient fusion of infrared and visible images[J]. Laser Magazine, 2022, 43(3): 109-113. DOI: 10.14016/j.cnki.jgzz.2022.03.109
|
[5] |
黄颖杰, 梅领亮, 王勇, 等. 基于红外与可见光图像融合的无人机探测研究[J]. 电脑知识与技术, 2022, 18(7): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS202207001.htm
HUANG Y J, MEI L L, WANG Y, et al. Research on UAV detection based on infrared and visible image fusion[J]. Computer Knowledge and Technology, 2022, 18(7): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS202207001.htm
|
[6] |
沈瑜, 陈小朋. 基于DLatLRR与VGG Net的红外与可见光图像融合[J]. 北京航空航天大学学报, 2021, 47(6): 1105-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202106003.htm
SHEN Y, CHEN X P. Infrared and visible image fusion based on DLatLRR and VGG Net[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1105-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202106003.htm
|
[7] |
LIU C H, QI Y, DING W R. Infrared and visible image fusion method based on saliency detection in sparse domain[J]. Infrared Physics & Technology, 2017, 83: 94-102.
|
[8] |
GUO L, YANG B. Fusion of infrared and visible images based on visual saliency[J]. Computer Science, 2015, 42(6): 211-235.
|
[9] |
胡雪凯, 罗蓬, 李铁成, 等. 基于自适应加权的多尺度图像融合研究[J]. 红外技术, 2022, 44(4): 404-409. http://hwjs.nvir.cn/article/id/514624de-3b87-466d-9683-f374c5b565b8
HU X K, LUO P, LI T C, et al. Multi-scale image fusion based on adaptive weighting[J]. Infrared Technology, 2022, 44(4): 404-409. http://hwjs.nvir.cn/article/id/514624de-3b87-466d-9683-f374c5b565b8
|
[10] |
陈国洋, 吴小俊, 徐天阳. 基于深度学习的无监督红外图像与可见光图像融合算法[J]. 激光与光电子学进展, 2022, 59(4): 151-160. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202204014.htm
CHEN G X, WU X J, XU T Y. Unsupervised infrared image and visible image fusion algorithm based on deep learning[J]. Progress in Laser and Optoelectronics, 2022, 59(4): 151-160. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202204014.htm
|
[11] |
李春艳, 孙韬, 谢俊峰. EMF深度学习可见光/红外图像融合算法[J]. 国外电子测量技术, 2020, 39(10): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL202010008.htm
LI C Y, SUN T, XIE J F. EMF deep learning visible/infrared image fusion algorithm[J]. Foreign Electronic Measurement Technology, 2020, 39(10): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL202010008.htm
|
[12] |
杨雪, 郑婷婷, 戴阳. 基于孪生卷积神经网络的图像融合[J]. 计算机系统应用, 2020, 29(5): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202005027.htm
YANG X, ZHEN T T, DAI Y. Image fusion based on twin convolutional neural network[J]. Computer System Application, 2020, 29(5): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202005027.htm
|
[13] |
沈瑜, 陈小朋, 杨倩. 多方向Laplacian能量和与tetrolet变换的图像融合[J]. 中国图象图形学报, 2020, 25(4): 721-731. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202004008.htm
SHEN Y, CHEN X P, YANG Q. Image fusion based on multi-direction Laplacian energy and Tetrolet transform[J]. Journal of Image and Graphics, 2020, 25(4): 721-731. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202004008.htm
|
[14] |
郝帅, 安倍逸, 付周兴, 等. 基于小波变换和各向异性扩散的红外和可见光图像融合算法[J]. 西安科技大学学报, 2022, 42(1): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202201024.htm
HAO S, AN B Y, FU Z X, et al. Infrared and visible image fusion algorithm based on wavelet transform and anisotropic diffusion[J]. Journal of Xi 'an University of Science and Technology, 2022, 42(1): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202201024.htm
|
[15] |
姜寒雪, 郭立强. 一种基于NSCT和对比度拉伸的红外与可见光图像融合算法[J]. 淮阴师范学院学报: 自然科学版, 2022, 21(1): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSK202201003.htm
JIANG H X, GUO L Q. An algorithm for infrared and visible image fusion based on NSCT and contrast stretching[J]. Journal of Huaiyin Normal University: Natural Science Edition, 2022, 21(1): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSK202201003.htm
|
[16] |
李威, 李忠民. NSST域红外和可见光图像感知融合[J]. 激光与光电子学进展, 2021, 58(20): 202-210. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202120021.htm
LI W, LI Z M. Perception fusion of infrared and visible images in NSST domain[J]. Progress in Laser and Optoelectronics, 2021, 58(20): 202-210. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202120021.htm
|
[17] |
沈瑜, 陈小朋, 苑玉彬, 等. 基于显著矩阵与神经网络的红外与可见光图像融合[J]. 激光与光电子学进展, 2020, 57(20): 76-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202020009.htm
SHEN Y, CHEN X P, YUAN Y B, et al. Infrared and visible image fusion based on saliency matrix and neural network[J]. Progress in Laser and Optoelectronics, 2020, 57(20): 76-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202020009.htm
|
[18] |
刘栋, 聂仁灿, 周冬明, 等. 结合NSST与GA参数优化PCNN图像融合[J]. 计算机工程与应用, 2018, 54(19): 158-163, 171. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201819025.htm
LIU D, NIE R C, ZHOU D M, et al. Optimization of PCNN image fusion based on NSST and GA parameters[J]. Computer Engineering and Applications, 2018, 54(19): 158-163, 171. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201819025.htm
|
[19] |
魏亚南, 曲怀敬, 王纪委, 等. 基于NSCT和卷积稀疏表示的红外与可见光图像融合[J]. 计算机与数字工程, 2022, 50(2): 276-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSG202202011.htm
WEI Y N, QU H J, WANG J W, et al. Infrared and visible image fusion based on NSCT and convolution sparse representation[J]. Computer and Digital Engineering, 2022, 50(2): 276-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSG202202011.htm
|
[20] |
陈卓, 方明, 柴旭, 等. 红外与可见光图像融合的U-GAN模型[J]. 西北工业大学学报, 2020, 38(4): 904-912. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202004027.htm
CHENG Z, FANG M, CHAI X, et al. U-GAN Model for infrared and visible image fusion[J]. Journal of Northwestern Polytechnical University, 2020, 38(4): 904-912. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202004027.htm
|
[21] |
YANG Z, ZENG S. TPFusion: Texture preserving fusion of infrared and visible images via dense networks[J]. Entropy, 2022, 24(2): 294.
|
[22] |
JING L, HUO H T, CHANG L, et al. AttentionFGAN: infrared and visible image fusion using attention-based generative adversarial networks[J]. IEEE Transactions on Multimedia, 2020, 23: 1383-1396.
|
[23] |
杨艳春, 高晓宇, 党建武, 等. 基于NSST与IFCNN的红外可见光图像融合算法[J]. 激光与光电子学进展, 2021, 58(20): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202120012.htm
YANG Y C, GAO X Y, DANG J W, et al. Infrared visible image Fusion algorithm based on NSST and IFCNN[J]. Progress in Laser and Optoelectronics, 2021, 58(20): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202120012.htm
|
[24] |
汪美琴, 袁伟伟, 张继业. 生成对抗网络GAN的研究综述[J]. 计算机工程与设计, 2021, 42(12): 3389-3395. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202112012.htm
WANG M Q, YUAN W W, ZHANG J Y. A review of generative adversarial networks[J]. Computer Engineering and Design, 2021, 42(12): 3389-3395. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202112012.htm
|
[25] |
MA J Y, XU H, JIANG J J, et al. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2020, 29: 4980-4995.
|
[26] |
李国梁, 向文豪, 张顺利, 等. 基于残差网络和注意力机制的红外与可见光图像融合算法[J]. 无人系统技术, 2022, 5(2): 9-21. https://www.cnki.com.cn/Article/CJFDTOTAL-UMST202202002.htm
LI G L, XIANG W H, ZHANG S L, et al. Infrared and visible image fusion algorithm based on residual network and attentional mechanism[J]. Unmanned System Technology, 2022, 5(2): 9-21. https://www.cnki.com.cn/Article/CJFDTOTAL-UMST202202002.htm
|
[27] |
YU L, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164.
|
[28] |
YU L, XUN C, Ward R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882-1886.
|