Citation: | WANG Xiaona, PAN Qing, TIAN Nili. Multi-modality Image Fusion Algorithm Based on NSST-DWT-ICSAPCNN[J]. Infrared Technology , 2022, 44(5): 497-503. |
[1] |
YANG Y, QUE Y, HUANG S, et al. Multimodal sensor medical image fusion based on type-2 fuzzy logic in NSCT domain[J]. IEEE Sensors Journal, 2016, 16(10): 3735-3745. DOI: 10.1109/JSEN.2016.2533864
|
[2] |
LI G, LIN Y, QU X. An infrared and visible image fusion method based on multi-scale transformation and norm optimization[J]. Information Fusion, 2021, 71: 109-129. DOI: 10.1016/j.inffus.2021.02.008
|
[3] |
LI X, ZHOU F, TAN H. Joint image fusion and denoising via three-layer decomposition and sparse representation[J]. Knowledge-Based Systems, 2021, 224: 107087. DOI: 10.1016/j.knosys.2021.107087
|
[4] |
XU H, MA J. EMFusion: An unsupervised enhanced medical image fusion network[J]. Information Fusion, 2021, 76: 177-186. . DOI: 10.1016/j.inffus.2021.06.001
|
[5] |
Bulanon D M, Burks T F, Alchanatis V. Image fusion of visible and thermal images for fruit detection[J]. Biosystems Engineering, 2009, 103(1): 12-22. DOI: 10.1016/j.biosystemseng.2009.02.009
|
[6] |
ZHAN L, ZHUANG Y, HUANG L. Infrared and visible images fusion method based on discrete wavelet transform[J]. J. Comput. , 2017, 28(2): 57-71.
|
[7] |
LIU Y, WANG Z. Simultaneous image fusion and denoising with adaptive sparse representation[J]. IET Image Processing, 2015, 9(5): 347-357. DOI: 10.1049/iet-ipr.2014.0311
|
[8] |
LIU Y, CHEN X, CHENG J, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018. DOI: 10.1142/S0219691318500182
|
[9] |
ZHU Z, ZHENG M, QI G, et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain[J]. IEEE Access, 2019, 7: 20811-20824. DOI: 10.1109/ACCESS.2019.2898111
|
[10] |
ZHANG L, ZENG G, WEI J, et al. Multi-modality image fusion in adaptive-parameters SPCNN based on inherent characteristics of image[J]. IEEE Sensors Journal, 2019, 20(20): 11820-11827.
|
[11] |
张蕾. 采用改进平均梯度与自适应PCNN的图像融合[J]. 计算机应用与软件, 2021, 38(3): 218-223. DOI: 10.3969/j.issn.1000-386x.2021.03.033
ZHANG Lei. Image fusion using improved average gradient and adaptive PCNN[J]. Computer Application and Software, 2021, 38(3): 218-223. DOI: 10.3969/j.issn.1000-386x.2021.03.033
|
[12] |
YIN M, LIU X, LIU Y, et al. Medical image fusion with parameter- adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(1): 49-64.
|
[13] |
Diwakar M, Singh P, Shankar A. Multi-modal medical image fusion framework using co-occurrence filter and local extrema in NSST domain[J]. Biomedical Signal Processing and Control, 2021, 68: 102788. DOI: 10.1016/j.bspc.2021.102788
|
[14] |
邓辉, 王长龙, 胡永江, 等. 脉冲耦合神经网络在图像融合中的应用研究[J]. 电光与控制, 2019, 26(11): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201911006.htm
DENG Hui, WANG Changlong, HU Yongjiang, et al. Application of pulse coupled neural network in image fusion[J]. Electronics Options & Contral, 2019, 26(11): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201911006.htm
|
[15] |
杨风暴, 董安冉, 张雷, 等. DWT、NSCT和改进PCA协同组合红外偏振图像融合[J]. 红外技术, 2017, 39(3): 201-208. http://hwjs.nvir.cn/article/id/hwjs201703001
YANG Fengbao, DONG Aran, ZHANG Lei, et al. Infrared Polarization Image fusion using the synergistic combination of DWT, NSCT and improved PCA[J]. Infrared Technology, 2017, 39(3): 201-208. http://hwjs.nvir.cn/article/id/hwjs201703001
|
[16] |
TAN W, Tiwari P, Pandey H M, et al. Multimodal medical image fusion algorithm in the era of big data[J]. Neural Computing and Applications, 2020: 1-21.
|
[17] |
JIANG L, ZHANG D, CHE L. Texture analysis-based multi-focus image fusion using a modified Pulse-Coupled Neural Network (PCNN)[J]. Signal Processing: Image Communication, 2021, 91: 116068. DOI: 10.1016/j.image.2020.116068
|
[18] |
LIU Z, Blasch E, XUE Z, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(1): 94-109.
|
[1] | LIAO Guangfeng, GUAN Zhiwei, CHEN Qiang. An Improved Dual Discriminator Generative Adversarial Network Algorithm for Infrared and Visible Image Fusion[J]. Infrared Technology , 2025, 47(3): 367-375. |
[2] | YUAN Hongchun, ZHANG Bo, CHENG Xin. Underwater Image Enhancement Algorithm Combining Transformer and Generative Adversarial Network[J]. Infrared Technology , 2024, 46(9): 975-983. |
[3] | LI Li, YI Shi, LIU Xi, CHENG Xinghao, WANG Cheng. Infrared Image Deblurring Based on Dense Residual Generation Adversarial Network[J]. Infrared Technology , 2024, 46(6): 663-671. |
[4] | DI Jing, REN Li, LIU Jizhao, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Three-branch Adversarial Learning and Compensation Attention Mechanism[J]. Infrared Technology , 2024, 46(5): 510-521. |
[5] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[6] | WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177. |
[7] | FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943. |
[8] | LI Yunhong, LIU Yudong, SU Xueping, LUO Xuemin, YAO Lan. Review of Infrared and Visible Image Registration[J]. Infrared Technology , 2022, 44(7): 641-651. |
[9] | HUANG Mengtao, GAO Na, LIU Bao. Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network[J]. Infrared Technology , 2022, 44(1): 41-46. |
[10] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |