Citation: | LI Li, YI Shi, LIU Xi, CHENG Xinghao, WANG Cheng. Infrared Image Deblurring Based on Dense Residual Generation Adversarial Network[J]. Infrared Technology , 2024, 46(6): 663-671. |
During infrared (IR) image capture, the shaking of camera equipment or rapid movement of the target causes motion blur in the image, significantly affecting the extraction and recognition of effective information. To address these problems, this study proposes an infrared image deblurring method based on a dense residual generation adversarial network (DeblurGAN). First, multiscale convolution kernels are employed to extract features at different scales and levels from infrared images. Second, a residual-in-residual dense block (RRDB) is used, instead of the residual unit in the original generation network, to improve the detail of the recovered IR images. Experiments were conducted on the infrared image dataset collected by our group, and the results show that compared to DeblurGAN, the proposed method improves PSNR by 3.60 dB and SSIM by 0.09. The subjective deblurring effect is better, and the recovered infrared images have clear edge contours and detail information.
[1] |
吴雪垠, 吴瑾, 张鹤. 逆滤波法在图像复原中的应用[J]. 信息技术, 2011, 35(10): 183-185. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZJ201110052.htm
WU X, WU J, ZHANG H. Research on image restoration techniques based on inverse filtering algorithm[J]. Information Technology, 2011, 35(10): 183-185. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZJ201110052.htm
|
[2] |
Gonzalez R C, Woods R E. Digital image processing[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1980, 28(4): 484-486. DOI: 10.1109/TASSP.1980.1163437
|
[3] |
Richardson W H. Bayesian-based iterative method of image restoration[J]. Opt. Soc. Am. , 1972, 62(1): 55-59 DOI: 10.1364/JOSA.62.000055
|
[4] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680.
|
[5] |
SUN J, CAO W, XU Z, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 769-777.
|
[6] |
Kupyn O, Martyniuk T, WU J, et al. Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8878-8887.
|
[7] |
陈乔松, 隋晓旭, 官旸珺, 等. 基于多尺度残差生成对抗网络的单图像盲去运动模糊方法[J]. 计算机应用研究, 2021, 38(3): 919-922. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103054.htm
CHEN Q S, SUI X X, GUAN Y J, et al. Method of single image blind deblurring based on multi scale residual generative adversarial networks [J]. Application Research of Computers, 2021, 38(3): 919-922. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103054.htm
|
[8] |
孙晶晶, 张艳艳, 高超, 等. 基于DeblurGAN的运动模糊图像盲复原算法研究[J]. 电子测量技术, 2022, 45(22): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL202222018.htm
SUN J J, ZHANG Y Y, GAO C, et al. Research on blind recovery algorithm for motion blurred images based on DeblurGAN[J]. Electronic Measurement Technology, 2022, 45(22): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL202222018.htm
|
[9] |
缪弘, 张文强. 基于深度卷积神经网络的视觉SLAM去模糊系统[J]. 中兴通讯技术, 2018, 24(5): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXTX201805015.htm
MIAO H, ZHANG W Q. Deep convolutional neural network for visual SLAM deblurring[J]. ZTE Technology Journal, 2018, 24(5): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXTX201805015.htm
|
[10] |
汪海敏. 基于卷积神经网络的图像超分辨率重建[D]. 成都: 电子科技大学, 2019.
WANG M M. Image super-resolution reconstruction based on convolutional neural network[D]. Chengdu: University of Electronic Science and Technology, 2019.
|
[11] |
Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5769-5779.
|
[12] |
DENG J, DONG W, Socher R, et al. Imagenet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255.
|
[13] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014.
|
[14] |
侯坤. 基于深度学习的图像去模糊方法研究与应用[D]. 南京: 南京信息工程大学, 2022.
HOU K. Research and Application of Image Deblurring Method Based on Deep Learning[D]. Nanjing: Nanjing University of Information Engineering, 2022.
|
[15] |
黄梦涛, 高娜, 刘宝. 基于双判别器加权生成对抗网络的图像去模糊方法[J]. 红外技术, 2022, 44(1): 41-46. http://hwjs.nvir.cn/cn/article/id/2b3573a7-0ce1-4b4e-b07a-1f946e1c30d6
HUANG M T, GAO N, LIU B. Image deblurring method based on a dual-discriminator weighted generative adversarial network[J]. Infrared Technology, 2022, 44(1): 41-46. http://hwjs.nvir.cn/cn/article/id/2b3573a7-0ce1-4b4e-b07a-1f946e1c30d6
|
[16] |
汪陈跃, 雷旭峰, 李泽民, 等. 空间变化离焦模糊红外图像快速复原算法[J]. 红外技术, 2021, 43(4): 378-384. http://hwjs.nvir.cn/cn/article/id/6ec351a1-38e8-450f-a409-5f75e4c0b601
WANG C Y, LEI X F, LI Z M, et al. Fast restoration algorithm for space-variant defocus blurred infrared images[J]. Infrared Technology, 2021, 43(4): 378-384. http://hwjs.nvir.cn/cn/article/id/6ec351a1-38e8-450f-a409-5f75e4c0b601
|
[17] |
陈彦林, 王志社, 邵文禹, 等. 红外与可见光图像多尺度Transformer融合方法[J]. 红外技术, 2023, 45(3): 266-275. http://hwjs.nvir.cn/cn/article/id/8d183327-f396-4c96-b8c4-24ab8acb6a44
CHEN Y L, WANG Z S, SHAO W Y, et al. Multi-scale transformer fusion method for infrared and visible images[J]. Infrared Technology, 2023, 45(3): 266-275. http://hwjs.nvir.cn/cn/article/id/8d183327-f396-4c96-b8c4-24ab8acb6a44
|
[18] |
曹宇彤, 宦克为, 薛超, 等. 基于卷积神经网络结合NSCT的红外与可见光图像融合[J]. 红外技术, 2023, 45(4): 378-385. http://hwjs.nvir.cn/cn/article/id/8dcdf3fd-9d63-4900-a2e6-8f851c64f950
CAO Y T, HUAN K W, XUAN C, et al. Infrared and visible image fusion based on CNN with NSCT[J]. Infrared Technology, 2023, 45(4): 378-385. http://hwjs.nvir.cn/cn/article/id/8dcdf3fd-9d63-4900-a2e6-8f851c64f950
|
[19] |
陈文艺, 杨承勋, 杨辉. 引导滤波和对数变换算法融合的多尺度Retinex红外图像增强[J]. 红外技术, 2022, 44(4): 397-403. http://hwjs.nvir.cn/cn/article/id/f1fcd3be-4a81-4b25-ad02-5f8c035f0be2
CHEN W Y, YANG C X, YANG H. Multiscale Retinex infrared image enhancement based on the fusion of guided filtering and Logarithmic transformation algorithm[J]. Infrared Technology, 2022, 44(4): 397-403. http://hwjs.nvir.cn/cn/article/id/f1fcd3be-4a81-4b25-ad02-5f8c035f0be2
|
[20] |
吉训生, 滕彬. 基于生成对抗网络的行人异常行为图像去模糊算法研究[J]. 光电工程, 2021, 48(6): 32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202106004.htm
JI X S, TENG B. Deblurring algorithm based on pedestrian abnormal behavior generation countermeasure network[J]. Opto-Electronic Engineering, 2021, 48(6): 32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202106004.htm
|
[1] | LIAO Guangfeng, GUAN Zhiwei, CHEN Qiang. An Improved Dual Discriminator Generative Adversarial Network Algorithm for Infrared and Visible Image Fusion[J]. Infrared Technology , 2025, 47(3): 367-375. |
[2] | HUANG Jingying, MA Yuying, QIAO Zhiping, HUANG Chengzhang. A 3D Motion Estimation Method of Aerial Targets for Airborne IR Platforms[J]. Infrared Technology , 2025, 47(1): 97-107. |
[3] | DONG Qilin, ZHAO Chuangshe, WANG Chao, YUAN Yijie, KONG Peng, WANG Maqiang, GAO Jianjian, LIU Wangang, ZHOU Gendong, CHENG Yongdong, WANG Yi. Translational Motion Compensation of Roll-Pitch Electro-Optical Pod to Ground Targets[J]. Infrared Technology , 2024, 46(11): 1339-1346. |
[4] | LI Yongkang, LI Xi, WANG Qiwen, XU Qi, LI Xiaoou. fNIRS Signal Motion Correction Algorithm Based on Convolutional Self-Coding[J]. Infrared Technology , 2024, 46(8): 923-932. |
[5] | LI Xianjing, HAO Zhenghui. Infrared Thermal Imaging Smoke Detection Based on Motion and Fuzzy Features[J]. Infrared Technology , 2024, 46(3): 325-331. |
[6] | BAI Hao, BAI Tingzhu. Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network[J]. Infrared Technology , 2024, 46(2): 176-182. |
[7] | HUANG Mengtao, GAO Na, LIU Bao. Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network[J]. Infrared Technology , 2022, 44(1): 41-46. |
[8] | ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan. Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network[J]. Infrared Technology , 2021, 43(3): 251-257. |
[9] | LU Jing, HU Gang, QIN Xinqiang. Multi-constraint Blind Restoration Method for Motion Blurred Image[J]. Infrared Technology , 2017, 39(12): 1098-1106. |
[10] | HU Tai-yang, XIAO Ze-long, XU Jian-zhong. Motion-blur Parameters Identification of Millimeter-wave Radiometric Images[J]. Infrared Technology , 2010, 32(5): 273-278. DOI: 10.3969/j.issn.1001-8891.2010.05.006 |
1. |
杨斌,李健,胡慧文,刘义英,陈文之. 基于无监督对抗模型的网络异常检测算法. 河南科学. 2025(03): 330-336 .
![]() |