DONG Qilin, ZHAO Chuangshe, WANG Chao, YUAN Yijie, KONG Peng, WANG Maqiang, GAO Jianjian, LIU Wangang, ZHOU Gendong, CHENG Yongdong, WANG Yi. Translational Motion Compensation of Roll-Pitch Electro-Optical Pod to Ground Targets[J]. Infrared Technology , 2024, 46(11): 1339-1346.
Citation: DONG Qilin, ZHAO Chuangshe, WANG Chao, YUAN Yijie, KONG Peng, WANG Maqiang, GAO Jianjian, LIU Wangang, ZHOU Gendong, CHENG Yongdong, WANG Yi. Translational Motion Compensation of Roll-Pitch Electro-Optical Pod to Ground Targets[J]. Infrared Technology , 2024, 46(11): 1339-1346.

Translational Motion Compensation of Roll-Pitch Electro-Optical Pod to Ground Targets

More Information
  • Received Date: November 24, 2023
  • Revised Date: January 18, 2024
  • The roll–pitch electro-optical pod mounted on an unmanned flight platform has a high velocity–height ratio. When observing the ground, a large image motion can occur during the exposure time of the photoelectric sensor, causing image blurring, and thereby, affecting the imaging quality. Simultaneously, a rapidly refreshed video scene results in the operator facing challenges in finding the target of interest. This in turn causes difficulties in tracking and capturing. Given the aforementioned issue, in this study, the information on inertial and electro-optical pods is used to calculate the angular velocity relative to the target motion and eliminate the adverse effects of carrier motion via the reverse angular motion of the equipment. Furthermore, limitations on compensation application and error analysis are provided. The relationship among target distance, compensation angular velocity, observation angle, and flight altitude is simulated. This is followed by a simulation analysis of the influence of inertial measurement error and frame angle error on the compensation angular velocity error. The actual hanging flight test shows that the electro-optical sight axis can point to any target area continuously and stably for a long time without considering the limited motion range of the equipment and provide clear and stable images as the output, without being affected by the translational motion of the carrier. This in turn provides significant convenience to the operator for observation and operation.

  • [1]
    吴海龙, 贾宏光, 魏群, 等. 滚仰式导引头跟踪回路角增量优化[J]. 光学精密工程, 2014, 22(10): 2787-2795.

    WU Hailong, JIA Hongguang, WEI Qun, et al. Optimization of angle increments in tracking loop for roll-pitch seekers [J]. Optics and Precision Engineering, 2014, 22(10): 2787-2795.
    [2]
    花文涛, 刘凯, 丁海山. 滚仰式红外导引头视线角速率提取方法研究[J]. 红外技术, 2015, 37(1): 63-72. http://hwjs.nvir.cn/cn/article/id/hwjs201501013

    HUA Wentao, LIU Kai, DING Haishan. Research on roll-pitch infrared seeker LOS rate extraction[J]. Infrared Technology, 2015, 37(1): 63-72. http://hwjs.nvir.cn/cn/article/id/hwjs201501013
    [3]
    田海英, 刘明. 基于扫描反射镜的航空相机前向像移补偿[J]. 光电工程, 2014, 41(9): 20-24.

    TIAN Haiying, LIU Ming. The forward image motion compensation scheme of aerial camera based on scanning mirror[J]. Opto-Electronics Engineering, 2014, 41(9): 20-24.
    [4]
    范秀英, 赵曼, 郭霏, 等. 速高比对航空相机的影响分析[J]. 兵工自动化, 2014, 33(3): 1-4.

    FAN Xiuying, ZHAO Man, GUO Fei, et al. Influence analysis of velocity to height ratio on aerial camera[J]. Ordnance Industry Automation, 2014, 33(3): 1-4.
    [5]
    闫明, 刘栋, 王惠林, 等. 机载光电观瞄系统的瞄准线指向线性运动补偿方法[J]. 应用光学, 2016, 37(1): 1-5.

    YAN Ming, LIU Dong, WANG Huilin, et al. Linear motion compensation algorithm for airborne electro-optical sighting system[J]. Journal of Applied Optics, 2016, 37(1): 1-5.
    [6]
    张树青, 张媛, 周程颢, 等. 星载TDICCD相机方位扫描像移模型研究[J]. 红外与激光工程, 2014, 43(6): 1823-1829. DOI: 10.3969/j.issn.1007-2276.2014.06.023

    ZHANG Shuqing, ZHANG Yuan, ZHOU Chenghao, et al. Image motion model of azimuth photography for satellite borne TDICCD camera[J]. Infrared and Laser Engineering, 2014, 43(6): 1823-1829. DOI: 10.3969/j.issn.1007-2276.2014.06.023
    [7]
    李伟雄, 闫得杰, 王栋. 高分辨率空间相机俯仰成像的像移补偿方法[J]. 红外与激光工程, 2013, 42(9): 2442-2448.

    LI Weixiong, YAN Dejie, WANG Dong. Image motion compensation method of high resouluttion space camera's imaging with pitch angle[J]. Infrared and Laser Engineering, 2013, 42(9): 2242-2448.
    [8]
    张丽, 汤恩生, 许敬旺. 空间相机像移补偿方法研究[J]. 航天返回与遥感, 2007, 28(3): 19-22. DOI: 10.3969/j.issn.1009-8518.2007.03.004

    ZHANG Li, TANG Ensheng, XU Jingwang. Studies on the image motion compensation methods of space camera [J]. Spacecraft Recovery & Remote Sensing, 2007, 28(3): 19-22. DOI: 10.3969/j.issn.1009-8518.2007.03.004
    [9]
    贾平, 张葆, 孙辉. 航空成像像移模糊恢复技术[J]. 光学精密工程, 2006, 14(4): 697-703. DOI: 10.3321/j.issn:1004-924X.2006.04.030

    JIA Ping, ZHANG Bao, SUN Hui. Restoration of motion-blurred aerial image[J]. Optics and Precision Engineering, 2006, 14(4): 697-703. DOI: 10.3321/j.issn:1004-924X.2006.04.030
    [10]
    闫得杰, 徐抒岩, 韩诚山. 飞行器姿态对空间相机像移补偿的研究[J]. 光学精密工程, 2008, 16(11): 2109-2203.

    YAN Dejie, XU Shuyan, HAN Chengshan. Effect of aerocraft attitude on image motion compensation of space camera[J]. Optics and Precision Engineering, 2008, 16(11): 2109-2203.
    [11]
    王惠林, 杜佩, 庞澜, 等. 基于机载惯导系统的地理跟踪技术[J]. 应用光学, 2011, 32(z): 5-8.

    WANG Huilin, DU Pei, PANG Lan, et al. Geo-tracking technique based on INS[J]. Journal of Applied Optics, 2011, 32(z): 5-8.
    [12]
    杨帅, 程红, 李婷, 等. 无人机图像侦察目标定位方法及精度分析[J]. 红外技术, 2016, 38(10): 825-831. DOI: 10.11846/j.issn.1001_8891.201610003

    YANG Shuai, CHENG Hong, LI Ting, et al. UAV reconnaissance images targeting method and accuracy analysis[J]. Infrared Technology, 2016, 38(10): 825-831. DOI: 10.11846/j.issn.1001_8891.201610003
    [13]
    刘鸣鹤, 杨照华. 对地观测相机像移速度矢量建模[J]. 电光与控制, 2014, 21(1): 63-67. DOI: 10.3969/j.issn.1671-637X.2014.01.015

    LIU Minghe, YANG Zhaohua. The model of image motion velocity vector in earth observation camera[J]. Elatronics Optics & Control, 2014, 21(1): 63-67. DOI: 10.3969/j.issn.1671-637X.2014.01.015
    [14]
    孙辉, 张淑梅. 机载成像系统像移计算模型与误差分析[J]. 光学精密工程, 2012, 20(11): 2492-2499.

    SUN Hui, ZHANG Shumei. Computation model and error budget for image motion of aerial imaging system[J]. Optics and Precision Engineering, 2012, 20(11): 2492-2499.
    [15]
    彭富伦, 王静, 吴颐雷, 等. 车载光电侦察系统目标定位及误差分析[J]. 应用光学, 2014, 35(4): 557-562.

    PENG Fulun, WANG Jing, WU Yilei, et al. Object positioning and error analysis of vehicular electro-optical reconnaissance system[J]. Journal of Applied Optics, 2014, 35(4): 557-562.
    [16]
    王东鹤, 陈定荣, 张绍君, 等. 直升机载光电平台目标定位误差分析[J]. 红外技术, 2015, 37(11): 926-931. http://hwjs.nvir.cn/cn/article/id/hwjs201511006

    WANG Donghe, CHEN Dingrong, ZHANG Shaojun, et al. Targeting error analysis on helicopter photoelectric platform[J]. Infrared Technology, 2015, 37(11): 926-931. http://hwjs.nvir.cn/cn/article/id/hwjs201511006
  • Related Articles

    [1]XU Yebin, WANG Yunpeng, LIU Shaolong, LIU Li, LI Rui. ReNet: Ground Rotating Target Detection Method Based on Anchor-Free Frame[J]. Infrared Technology , 2025, 47(2): 211-216.
    [2]HUANG Jingying, MA Yuying, QIAO Zhiping, HUANG Chengzhang. A 3D Motion Estimation Method of Aerial Targets for Airborne IR Platforms[J]. Infrared Technology , 2025, 47(1): 97-107.
    [3]ZOU Qianjin, ZHANG Hengwei, WANG Dong, LIU Xiaohu, TIAN Zhuangzhuang. Analysis of Calibration Method and Occasion of Ground-based Infrared Imaging Equipments with Different FOVs[J]. Infrared Technology , 2023, 45(11): 1236-1241.
    [4]WANG Liguang, SHUI Junjie, XU Luhui, ZHAO Jiong, YU Changqing, FAN Yiming. Digital Twin Guidance Law for Missile to Hit Weak Ground Infrared Target[J]. Infrared Technology , 2023, 45(7): 768-774.
    [5]WANG Yuping, ZENG Yi. Weak and Small Infrared Target Detection Combined With Frame Difference Kernel Correlation Filtering[J]. Infrared Technology , 2023, 45(7): 755-767.
    [6]YANG Jiajia, ZHOU Fangfang, CUI Lishan, ZHOU Ji. Infrared Characteristics of Ground Targets and Background Observed from Near Space[J]. Infrared Technology , 2021, 43(7): 670-678.
    [7]ZHOU Xia, CHEN Qian, QIAN Wei-xian, GU Guo-hua, XU Fu-yuan. Research on the Algorithm of Dim and Small Targets Detection on the Ground[J]. Infrared Technology , 2013, (6): 334-338.
    [8]JI Shu-peng, DING Xiao-qing. Morphological Filters and Wavelet-based Histogram Equalization Image Enhancement for Weak Target Detection[J]. Infrared Technology , 2003, 25(4): 32-38. DOI: 10.3969/j.issn.1001-8891.2003.04.008
    [9]A Genetic Algorithm Approach to Optimize Parameters in Infrared Guidance System[J]. Infrared Technology , 2001, 23(6): 20-25. DOI: 10.3969/j.issn.1001-8891.2001.06.006
    [10]WU xiao-kun, YANG Yu, WU Xing-hui. Theoretical Study for Determining the Ge Crystal-Size of Gex/Si1-x Multilayer by Raman Scattering Spectra[J]. Infrared Technology , 2001, 23(1): 15-18. DOI: 10.3969/j.issn.1001-8891.2001.01.005

Catalog

    Article views (36) PDF downloads (15) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return