HUANG Mengtao, GAO Na, LIU Bao. Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network[J]. Infrared Technology , 2022, 44(1): 41-46.
Citation: HUANG Mengtao, GAO Na, LIU Bao. Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network[J]. Infrared Technology , 2022, 44(1): 41-46.

Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network

More Information
  • Received Date: January 23, 2021
  • Revised Date: April 07, 2021
  • The original generative adversarial network (GAN) is susceptible to the problems of vanishing gradients and mode collapse during the training process, and its deblurring effectiveness is poor. This study proposes an image deblurring method using a dual-discriminator weighted GAN. To extend the original GAN, a discriminator network is added to combine the forward and reverse Kullback–Leibler (KL) divergences into an objective function, and weights are used to adjust the ratio of forward and reverse KL divergences to leverage the complementary characteristics of the two divergences to avoid the formation of undesirable patterns in the process of learning clear pictures. Theoretical analysis proves that when an optimal discriminator is given, the difference between the forward and reverse KL divergences between real and generated data can be minimized. Experimental results demonstrate that compared to the existing methods, the proposed method can restore the details of an image more realistically and provides better performance in terms of the evaluation indexes of peak signal-to-noise ratio and structural similarity.
  • [1]
    李明东, 张娟, 伍世虔, 等. 基于RANSAC变换的车牌图像去模糊算法[J]. 传感器与微系统, 2020, 39(2): 153-156, 160. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202002043.htm

    LI Mingdong, ZHANG Juan, WU Shiyu, et al. A deblurring algorithm for license plate image based on RANSAC transform[J]. Sensors and Microsystems, 2020, 39(2): 153-156, 160. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202002043.htm
    [2]
    马苏欣, 王家希, 戴雅淑, 等. 监控视频下模糊车牌的去模糊与识别探析[J]. 信息系统工程, 2019(11): 111-113. DOI: 10.3969/j.issn.1001-2362.2019.11.046

    MA Suxin, WANG Jiaxi, DAI Yashu, et al. Research on the deblurring and recognition of fuzzy license plates under surveillance video[J]. Information System Engineering, 2019(11): 111-113. DOI: 10.3969/j.issn.1001-2362.2019.11.046
    [3]
    裴慧坤, 颜源, 林国安, 等. 基于生成对抗网络的无人机图像去模糊方法[J]. 地理空间信息, 2019, 17(12): 4-9, 155. DOI: 10.3969/j.issn.1672-4623.2019.12.002

    FEI Huikun, YAN Yuan, LIN Guoan et al. Deblurring method of UAV image based on generative confrontation network[J]. Geospatial Information, 2019, 17(12): 4-9, 155. DOI: 10.3969/j.issn.1672-4623.2019.12.002
    [4]
    黄允浒, 吐尔洪江, 唐泉, 等. 一种基于à trous算法的遥感图像模糊集增强算法[J]. 计算机应用与软件, 2018, 35(3): 187-192, 246. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201803037.htm

    HUANG Yunhu, TU Erhong, TANG Quan, et al. A remote sensing image fuzzy set enhancement algorithm based on à trous algorithm[J]. Computer Applications and Software, 2018, 35(3): 187-192, 246. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201803037.htm
    [5]
    张广明, 高爽, 尹增山, 等. 基于模糊图像和噪声图像的遥感图像运动模糊复原方法[J]. 电子设计工程, 2017, 25(18): 82-86. DOI: 10.3969/j.issn.1674-6236.2017.18.020

    ZHANG Guangming, GAO Shuang, YI Zengshan, et al. Remote sensing image motion blur restoration method based on blurred image and noise image[J]. Electronic Design Engineering, 2017, 25(18): 82-86. DOI: 10.3969/j.issn.1674-6236.2017.18.020
    [6]
    吴庆波, 任文琦. 基于结构加权低秩近似的泊松图像去模糊[J]. 北京航空航天大学学报, 2020, 46(9): 1701-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202009010.htm

    WU Qingbo, REN Wenqi. Poisson image deblurring based on structure-weighted low-rank approximation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1701-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202009010.htm
    [7]
    RICHARDSON W. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 1972, 62(1): 55-59. DOI: 10.1364/JOSA.62.000055
    [8]
    LUCY B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 1974, 79(6): 745-754. http://pdfs.semanticscholar.org/30ad/4474c7d6e9fd68b3e0fa2db235f1c8bc32f0.pdf
    [9]
    IAN G, JEAN P, MEHDI M, et al. Generative adversarial nets[C]//Adv. in 27th Neural Inf. Processing Syst. (NIPS), 2014: 2672-2680.
    [10]
    LEDIG C. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proc. of the IEEE Conf. on Comp. Vis. and Patt. Recog. (CVPR), 2017: 105-114.
    [11]
    LI Y, ZHAO K, ZHAO J. Research on super-resolution image reconstruction based on low-resolution infrared sensor[J]. IEEE Access, 2020(8): 69186-69199. http://ieeexplore.ieee.org/document/9052738/
    [12]
    LI Z, WANG W, ZHAO Y. Image Translation by Domain-Adversarial Train[J]. Compu. Intel. And Neuro. , 2018: 1-11. Doi: 10.1155/2018/8974638.
    [13]
    YANG T, CHANG X, SU H, et al. Raindrop removal with light field image using image inpainting[J]. IEEE Access, 2020(8): 58416-58426. http://ieeexplore.ieee.org/document/9040628
    [14]
    Mirza M, Osindero S. Conditional generative adversarial nets[J/OL]. arXiv preprint arXiv: 1411.1784, 2014, https://arxiv.org/abs/1411.1784.
    [15]
    Orest K, Volodymyr B, Mykola M, et al. DeblurGAN: Blind motion deblurring using conditional adversarial networks[C]//Proc. of the IEEE Conf. on Comp. Vis. And Patt. Recog., 2018: 8183-8192.
    [16]
    NGUYENT, LE T, VU H. Dual discriminator generative adversarial nets[C]//Proc. 29th Int. Conf. Neur. Inf. Pro. Sys., 2017: 2667-2677.
    [17]
    Lucas T, Aäron V, Matthias B. A note on the evaluation of generative models[J/OL]. arXiv preprint arXiv: 1511.01844, 2015. https://arxiv.org/abs/1511.01844
    [18]
    IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//ICML'15: Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015, 37: 448-456.
    [19]
    Ulyanov D, Vedaldi A, Lempitsky V. Instance normalization: the missing ingredient for fast stylization[C]//Proc. of the IEEE Conf. on Comp. Vis. and Patt. Recog. (CVPR), 2016: 1-13.
    [20]
    LI C, WAND M. Precomputed Real-time texture synthesis with markovian generative adversarial networks[C]//European Conference on Computer Vision, 2016: 702-716.
    [21]
    Maas L, Hannun Y, Ng Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proc. ICML., 2013: 1-3.
    [22]
    JOHNSON J, ALAHI A, FEI L. Perceptual losses for real-time style transfer and super-resolution[C]//Proc. of European Conference on Computer Vision, 2016: 694-711.
    [23]
    SUN J, CAO W, XU Z, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]//Proc. of the IEEE Conf. on Comp. Vis. and Patt. Recog. (CVPR), 2015: 769-777.
    [24]
    NAH S, KIM H, LEE M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//IEEE Conf. on Comp. Vis. and Patt. Recog. (CVPR), 2017: 257-265.
    [25]
    Kingma D, Ba J. Adam: A method for stochastic optimization[C]//Int. Conf. for Learning Representations (ICLR), 2015: 1-15.
  • Related Articles

    [1]LIAO Guangfeng, GUAN Zhiwei, CHEN Qiang. An Improved Dual Discriminator Generative Adversarial Network Algorithm for Infrared and Visible Image Fusion[J]. Infrared Technology , 2025, 47(3): 367-375.
    [2]YUAN Hongchun, ZHANG Bo, CHENG Xin. Underwater Image Enhancement Algorithm Combining Transformer and Generative Adversarial Network[J]. Infrared Technology , 2024, 46(9): 975-983.
    [3]LI Li, YI Shi, LIU Xi, CHENG Xinghao, WANG Cheng. Infrared Image Deblurring Based on Dense Residual Generation Adversarial Network[J]. Infrared Technology , 2024, 46(6): 663-671.
    [4]DI Jing, REN Li, LIU Jizhao, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Three-branch Adversarial Learning and Compensation Attention Mechanism[J]. Infrared Technology , 2024, 46(5): 510-521.
    [5]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [6]WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177.
    [7]FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943.
    [8]LI Yunhong, LIU Yudong, SU Xueping, LUO Xuemin, YAO Lan. Review of Infrared and Visible Image Registration[J]. Infrared Technology , 2022, 44(7): 641-651.
    [9]HUANG Mengtao, GAO Na, LIU Bao. Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network[J]. Infrared Technology , 2022, 44(1): 41-46.
    [10]LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574.

Catalog

    Article views (157) PDF downloads (35) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return