LI Xianjing, HAO Zhenghui. Infrared Thermal Imaging Smoke Detection Based on Motion and Fuzzy Features[J]. Infrared Technology , 2024, 46(3): 325-331.
Citation: LI Xianjing, HAO Zhenghui. Infrared Thermal Imaging Smoke Detection Based on Motion and Fuzzy Features[J]. Infrared Technology , 2024, 46(3): 325-331.

Infrared Thermal Imaging Smoke Detection Based on Motion and Fuzzy Features

More Information
  • Received Date: December 02, 2022
  • Revised Date: July 09, 2023
  • The production process of coking enterprises generates abundant smoke. Their discharge and leakage can pollute the natural environment, endangering the safety of life and production. Considering the low contrast and poor texture of thermal imaging videos, this study detected smoke with motion and fuzzy characteristics. The noise degree of each frame image can be calculated to replace the fixed threshold of the Vibe detection algorithm so that the moving target area can be completely detected. First, the image was divided into block area images; then, the fuzzy-to-noise ratio in this area was extracted by combining the motion area, the features calculated when the fast fourier transform (FFT) was used to calculate the ambiguity were trained to generate a smoke classifier, and finally, the experimental video detection, with an average accuracy rate of 94.53%. The results show that the proposed algorithm is accurate, operates in real-time for smoke detection in infrared thermal imaging videos of coking enterprises, and has good anti-interference ability.
  • [1]
    张斌, 魏维, 何冰倩. 基于多特征融合的早期野火烟雾检测[J]. 成都信息工程大学学报, 2018, 33(4): 408-412. https://www.cnki.com.cn/Article/CJFDTOTAL-CDQX201804010.htm

    ZHANG Bin, WEI Wei, HE Bingqian. Early wildfire smoke detection based on multi-feature fusion[J]. Journal of Chengdu University of Information, 2018, 33(4): 408-412. https://www.cnki.com.cn/Article/CJFDTOTAL-CDQX201804010.htm
    [2]
    刘通, 程江华, 华宏虎, 等. 结合YdUaVa颜色模型和改进MobileNetV3的视频烟雾检测方法[J]. 国防科技大学学报, 2021, 43(5): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ202105009.htm

    LIU Tong, CHENG Jianghua, HUA Honghu, et al. Video smoke detection method combining Yd Ua Va color and improved MobileNetV3[J]. Journal of National University of Defense, 2021, 43(5): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ202105009.htm
    [3]
    宋少杰. 基于GMM改进算法的森林火灾检测研究[D]. 南京: 南京邮电大学, 2021. DOI: 10.27251/d.cnki.gnjdc.2021.000473.

    SONG Shaojie. Research on Forest Fire Detection Based on proved GMM Algorithm[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021. DOI: 10.27251/d.cnki.gnjdc.2021.000473.
    [4]
    Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51-59. DOI: 10.1016/0031-3203(95)00067-4
    [5]
    YUAN F, SHI J, XIA X, et al. Co-occurrence matching of local binary patterns for improving visual adaption and its application to smoke recognition[J]. IET Computer Vision, 2019, 13(2): 178-187. DOI: 10.1049/iet-cvi.2018.5164
    [6]
    YUAN F N, XIA X, SHI J T. Holistic learning-based high-order feature descriptor for smoke recognition[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2019, 17(2): 194005.
    [7]
    邓实强, 丁浩, 杨孟, 等. 基于视频图像的公路隧道火灾烟雾检测[J]. 隧道建设, 2022, 42(2): 291-302. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202202015.htm

    DENG Shiqiang, DING Hao, YANG Meng, et al. Fire smoke detection in highway tunnels based on video images[J]. Tunnel Construction, 2022, 42(2): 291-302. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202202015.htm
    [8]
    WANG Y, HAN Q, LI Y, et al. Video smoke detection based on multi-feature fusion and modified random forest[J]. Engineering Letters, 2021, 29(3): 38-45.
    [9]
    殷梦霞, 王理, 孙连营. 基于多特征融合的自适应烟雾检测算法[J]. 建筑科学, 2019, 35(9): 26-31. DOI:10.13614/j.cnki.11-1962/tu.2019. 09.005.

    YIN Mengxia, WANG Li, SUN Lianying. Adaptive smoke detection algorithm based on multi-feature fusion[J]. Building Science, 2019, 35(9): 26-31. DOI: 10.13614/j.cnki.11-1962/tu.2019.09.005.
    [10]
    王媛彬. 煤矿烟雾的计算机视觉检测方法[J]. 辽宁工程技术大学学报: 自然科学版, 2016, 35(11): 1230-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201611007.htm

    WANG Yuanbin. Smoke detection based on computer vision in coal mine[J]. Journal of Liaoning Technical University: Natural Science, 2016, 35(11): 1230-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201611007.htm
    [11]
    马永杰, 陈梦利, 刘培培, 等. ViBe算法鬼影抑制方法研究[J]. 激光与光电子学进展, 2020, 57(2): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202002009.htm

    MA Yongjie, CHEN Mengli, LIU Peipei, et al. Research on ViBe algorithm ghost suppression method[J]. Laser & Optoelectronics Progress, 2020, 57(2): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202002009.htm
    [12]
    汤旻安, 王晨雨. 基于改进ViBe算法的静态场景运动目标检测[J]. 激光与光电子学进展, 2021, 58(14): 216-224. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202114021.htm

    TANG Minan, WANG Chenyu. Moving object detection in static scene based on improved ViBe algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(14): 216-224. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202114021.htm
  • Related Articles

    [1]LYU Pengyuan, LAN Jinjiang, ZENG Xueren, NIU Pei, FANG Liang, ZHAO Songpu. Infrared Object Detection Algorithm Based on Feature Enhancement and Fusion[J]. Infrared Technology , 2024, 46(7): 782-790.
    [2]HU Yan, YUAN Zihao, TU Xiaoguang, LIU Jianhua, LEI Xia, WANG Wenjing. Improved SSD Object Detection Algorithm Based on Contrastive Learning[J]. Infrared Technology , 2024, 46(5): 548-555.
    [3]TAN Dan, ZHANG Zhijie, WANG Luxiang, YIN Wuliang. Design of Infrared Thermal Wave Image Defect Detection System Based on LabVIEW[J]. Infrared Technology , 2024, 46(4): 483-490.
    [4]HONG Ying, AN Wei, JIANG Haijun, ZHANG Kai, CHEN Fei. Welding Quality Inspection for Explosion-proof Sheet of Lithium Battery Based on Pulsed Infrared Thermography[J]. Infrared Technology , 2023, 45(10): 1052-1058.
    [5]ZHAO Leilei, HE Wei, ZHANG Sen, GAO Kaiyue, LIU Lina, ZHANG Kunyu. Simulation of Smoke Echo Characteristics of Pulsed Laser Proximity Detection[J]. Infrared Technology , 2023, 45(8): 863-868.
    [6]WANG Luxiang, ZHANG Zhijie, WANG Quan, CHEN Haoze. Infrared Image Defect Detection Based on the Algorithm of Intuitionistic Fuzzy C-Means Clustering[J]. Infrared Technology , 2022, 44(11): 1220-1227.
    [7]YANG Yu, HE Chaoguang, TU Yuan, ZHAO Jiefeng, ZHOU Xiaoping, TANG Lijun. Leakage Source Detection Based on Thermal Imaging[J]. Infrared Technology , 2022, 44(7): 750-756.
    [8]XIE Wenxin, MA Wei, DU Xuexue, NI Jiamin, YIN Chenbo. Thermal Imaging Technology for Metal Structure Defects of Lifting Machinery[J]. Infrared Technology , 2022, 44(7): 741-749.
    [9]XI Xiaowen, SU Qingfeng, YUAN Yanni, JIANG Haijun, CHEN Li, WEI Yibing. Comparative Study of Using Ultrasonic Infrared Thermography for Detecting Aeroengine Blade Cracks[J]. Infrared Technology , 2021, 43(2): 186-191.
    [10]ZENG Jingni, DENG Fangge. Application of Infrared Thermal Imaging in Breast Disease Detection[J]. Infrared Technology , 2020, 42(5): 501-505.
  • Cited by

    Periodical cited type(1)

    1. 刘晓聪,耿丽清,杨耿煌,杨亚东,施莹. 改进YOLOv5的森林烟雾及烟雾源检测方法. 天津职业技术师范大学学报. 2024(04): 18-24 .

    Other cited types(0)

Catalog

    Article views (96) PDF downloads (30) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return