Citation: | CHONG Fating, DONG Zhangyu, YANG Xuezhi, ZENG Qingwang. SAR and Multispectral Image Fusion Based on Dual-channel Multi-scale Feature Extraction and Attention[J]. Infrared Technology , 2024, 46(1): 61-73. |
[1] |
TU T M, HUANG P S, HUNG C L, et al. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 309-312. DOI: 10.1109/LGRS.2004.834804
|
[2] |
Pal S K, Majumdar T J, Bhattacharya A K. ERS-2 SAR and IRS-1C LISS Ⅲ data fusion: A PCA approach to improve remote sensing based geological interpretation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 61(5): 281-297. DOI: 10.1016/j.isprsjprs.2006.10.001
|
[3] |
TU T M, LEE Y C, CHANG C P, et al. Adjustable intensity-hue-saturation and Brovey transform fusion technique for IKONOS/QuickBird imagery[J]. Optical Engineering, 2005, 44(11): 116201. DOI: 10.1117/1.2124871
|
[4] |
Burt P J, Adelson E H. The Laplacian Pyramid as a Compact Image Code[M]. Readings in Computer Vision. Morgan Kaufmann, 1987: 671-679.
|
[5] |
Ranchin T, Wald L. The wavelet transform for the analysis of remotely sensed images[J]. International Journal of Remote Sensing, 1993, 14(3): 615-619. DOI: 10.1080/01431169308904362
|
[6] |
GUO K, Labate D, Lim W Q. Edge analysis and identification using the continuous shearlet transform[J]. Applied and Computational Harmonic Analysis, 2009, 27(1): 24-46. DOI: 10.1016/j.acha.2008.10.004
|
[7] |
DA Cunha A L, ZHOU J, DO M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101. DOI: 10.1109/TIP.2006.877507
|
[8] |
Masi G, Cozzolino D, Verdoliva L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7): 594. DOI: 10.3390/rs8070594
|
[9] |
WEI Y, YUAN Q, SHEN H, et al. Boosting the accuracy of multispectral image pansharpening by learning a deep residual network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1795-1799. DOI: 10.1109/LGRS.2017.2736020
|
[10] |
YANG J, FU X, HU Y, et al. PanNet: A deep network architecture for pan-sharpening[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 5449-5457.
|
[11] |
吴佼华, 杨学志, 方帅, 等. 基于双分支卷积神经网络的SAR与多光谱图像融合实验[J]. 地理与地理信息科学, 2021, 37(2): 22-30. DOI: 10.3969/j.issn.1672-0504.2021.02.004
WU J H, YANG X Z, FANG S, et al. SAR and multispectral image fusion experiment based on dual branch convolutional neural network [J]. Geography and Geo-information Science, 2021, 37(2): 22-30. DOI: 10.3969/j.issn.1672-0504.2021.02.004
|
[12] |
XU H, MA J, JIANG J, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(1): 502-518.
|
[13] |
LIU Q, HAN L, TAN R, et al. Hybrid attention based residual network for pansharpening[J]. Remote Sensing, 2021, 13(10): 1962. DOI: 10.3390/rs13101962
|
[14] |
董张玉, 许道礼, 张晋, 等. 基于双分支多尺度残差融合嵌套的SAR和多光谱图像融合架构与实验[J]. 地理与地理信息科学, 2023, 39(1): 23-30.
DONG Z Y, XU D L, ZHANG J, et al. Architecture and experiments of SAR and multispectral image fusion based on double-branch multiscale residual-fusion nesting[J]. Geography and Geo-information Science, 2023, 39(1): 23-30.
|
[15] |
MIN A, GUO Z, LI H, et al. JMnet: Joint metric neural network for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-12.
|
[16] |
郭彭浩. 基于卷积神经网络和贝叶斯理论的遥感图像Pansharpening算法研究[D]. 南京: 南京信息工程大学, 2021.
GUO P H. Research on Pansharpening Algorithm of Remote Sensing Image Based on Convolution Neural Network and Bayesian Theory[D]. Nanjing: Nanjing University of Information Engineering, 2021.
|
[17] |
申兴成, 杨学志, 董张玉, 等. 结合扩张卷积的残差网络SAR图像去噪[J]. 测绘科学, 2021, 46(12): 106-114.
SHEN X C, YANG X Z, DONG Z Y, et al. Residual network combined with dilated convolution for SAR image denoising[J]. Science of Surveying and Mapping, 2021, 46(12): 106-114.
|
[18] |
黄玲琳, 李强, 路锦正, 等. 基于多尺度和注意力模型的红外与可见光图像融合[J]. 红外技术, 2023, 45(2): 143-149. http://hwjs.nvir.cn/article/id/10e9d4ea-fb05-43a5-817a-bcad09f693b8
HUANG L L, LI Q, LU J Z, et al. Infrared and visible image fusion based on multi-scale and attention model[J]. Infrared Technology, 2023, 45(2): 143-149. http://hwjs.nvir.cn/article/id/10e9d4ea-fb05-43a5-817a-bcad09f693b8
|
[19] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[20] |
WANG Q, WU B, ZHU P, et al. Supplementary material for 'ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13-19.
|
[21] |
LIU Y, SHAO Z, Hoffmann N. Global attention mechanism: retain information to enhance channel-spatial interactions[J/OL]. arXiv preprint arXiv, 2021, https://arxiv.org/abs/2112.05561.
|
[22] |
DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.
|
[23] |
LI P, LEE S H, HSU H Y, et al. Nonlinear fusion of multispectral citrus fruit image data with information contents[J]. Sensors, 2017, 17(1): 142.
|
[24] |
ZHOU J, Civco D L, Silander J A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data[J]. International Journal of Remote Sensing, 1998, 19(4): 743-757.
|
[25] |
WANG Z, Bovik A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-84.
|
[26] |
CHENG J, LIU H, LIU T, et al. Remote sensing image fusion via wavelet transform and sparse representation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 158-173.
|
[27] |
WANG X L, CHEN C X. Image fusion for synthetic aperture radar and multispectral images based on sub-band-modulated non-subsampled contourlet transform and pulse coupled neural network methods[J]. The Imaging Science Journal, 2016, 64(2): 87-93.
|
[28] |
SHAO Z, CAI J. Remote sensing image fusion with deep convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1656-1669.
|
[1] | LIAO Guangfeng, GUAN Zhiwei, CHEN Qiang. An Improved Dual Discriminator Generative Adversarial Network Algorithm for Infrared and Visible Image Fusion[J]. Infrared Technology , 2025, 47(3): 367-375. |
[2] | YUAN Hongchun, ZHANG Bo, CHENG Xin. Underwater Image Enhancement Algorithm Combining Transformer and Generative Adversarial Network[J]. Infrared Technology , 2024, 46(9): 975-983. |
[3] | LI Li, YI Shi, LIU Xi, CHENG Xinghao, WANG Cheng. Infrared Image Deblurring Based on Dense Residual Generation Adversarial Network[J]. Infrared Technology , 2024, 46(6): 663-671. |
[4] | DI Jing, REN Li, LIU Jizhao, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Three-branch Adversarial Learning and Compensation Attention Mechanism[J]. Infrared Technology , 2024, 46(5): 510-521. |
[5] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[6] | WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177. |
[7] | FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943. |
[8] | LI Yunhong, LIU Yudong, SU Xueping, LUO Xuemin, YAO Lan. Review of Infrared and Visible Image Registration[J]. Infrared Technology , 2022, 44(7): 641-651. |
[9] | HUANG Mengtao, GAO Na, LIU Bao. Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network[J]. Infrared Technology , 2022, 44(1): 41-46. |
[10] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |