LI Yaqing, ZUO Jianing, LI Xiaolu, ZHOU Shengtao, CHU Zhujun, DU Peide, WANG Guangfan. Research on Temperature Compensation of Image Intensifier Based on Auto-gated Power Supply[J]. Infrared Technology , 2023, 45(10): 1126-1131.
Citation: LI Yaqing, ZUO Jianing, LI Xiaolu, ZHOU Shengtao, CHU Zhujun, DU Peide, WANG Guangfan. Research on Temperature Compensation of Image Intensifier Based on Auto-gated Power Supply[J]. Infrared Technology , 2023, 45(10): 1126-1131.

Research on Temperature Compensation of Image Intensifier Based on Auto-gated Power Supply

More Information
  • Received Date: January 28, 2023
  • Revised Date: March 18, 2023
  • The brightness gain and maximum output brightness of super gen Ⅱ auto-gated image intensifiers vary with temperature. Here, we analyzed the principles of temperature compensation and designed a temperature compensation scheme. The compensation coefficient was determined experimentally, and the rationality of the temperature-compensation scheme was verified using the data. The experimental results showed that the low temperature (-45℃) brightness gain can be reduced from 121% to 105% by reducing the MCP voltage by 14.7 V under low illumination conditions (input illumination is less than 5×10-4 lx), and the high temperature (55℃) brightness gain can be increased from 77% to 99% by increasing the MCP voltage by 16.5 V. Under high illumination conditions (input illumination of more than 5×10-4 lx), the maximum output brightness at low temperatures can be reduced from 114% to less than 104% by reducing the anode current setting value by 14%, and the maximum output brightness at high temperature can be increased from 87% to more than 91% by increasing the anode current setting value by 12.6%. Therefore, the temperature compensation technology described herein can effectively improve the consistency of the brightness gain and maximum output brightness of auto-gated image intensifiers under high- and low-temperature conditions.
  • [1]
    李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189

    LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
    [2]
    邓广绪, 延波, 智强, 等. 微光像增强器自动门控电源技术研究[J]. 红外技术, 2012, 34(3): 155-158. DOI: 10.3969/j.issn.1001-8891.2012.03.006

    DENG Guangxu, YAN Bo, ZHI Qiang, et al. Study on technology of auto-gating power source in image intensifier[J]. Infrared Technology, 2012, 34(3): 155-158. DOI: 10.3969/j.issn.1001-8891.2012.03.006
    [3]
    黄林涛, 赵宝升, 张小秋. 一种带新型自动门控电源的像增强器[J]. 激光与光电子学进展, 2005(4): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200504007.htm

    HUANG Lintao, ZHAO Baosheng, ZHANG Xiaoqiu. Auto-gated power supply for generation image intensifiers[J]. Laser & Optoelectronics Progress, 2005(4): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200504007.htm
    [4]
    李亚情, 周盛涛, 王光凡, 等. 普通高压电源超二代微光像增强器亮度增益温度特性研究[J]. 红外技术, 2022, 44(8): 804-810. http://hwjs.nvir.cn/article/id/ef8c97a9-4aac-43f1-a102-98f9b0bb4617

    LI Yaqing, ZHOU Shengtao, WANG Guangfan, et al. Research on brightness gain temperature characteristics of super gen. Ⅱ low-light-level image intensifier using high-voltage DC power supply[J]. Infrared Technology, 2022, 44(8): 804-810. http://hwjs.nvir.cn/article/id/ef8c97a9-4aac-43f1-a102-98f9b0bb4617
    [5]
    杨壮, 唐钦, 李璀, 等. 某型混联微光像增强器增益漂移问题研究[J]. 兵工自动化, 2020, 39(11): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD202011005.htm

    YANG Zhuang, TANG Qing, LI Chui, et al. Research on gain drift of certain type hybrid image intensifier[J]. Ordnance Industry Automation, 2020, 39(11): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD202011005.htm
    [6]
    孙默涵, 钱芸生, 任莹楠, 等. 基于自动亮度控制模型的门控型微光像增强器荧光屏亮度研究[J]. 光子学报, 2022, 51(3): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203014.htm

    SUN Mohan, QIAN Yunsheng, REN Yingnan, et al. Brightness of the screen of gated low light level image intensifier based on automatic brightness control model[J]. Acta Photonica Sinica, 2022, 51(3): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203014.htm
    [7]
    XU Shiyu, CHANG Le, LIU Beihong, et al. Characterization of image intensifier tubes in vary temperature environments[C]//Proc. Of SPIE, 2022, 12169: 3209-3213.
    [8]
    李晓峰, 杜木林, 徐传平, 等. 影响超二代像增强器最高增益的因数分析[J]. 光子学报, 2022, 51(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm

    LI Xiaofeng, DU Mulin, XU Chuanping, et al. Analysis on factors affecting the maximum gain of super second generation image intensifier[J]. Acta Photonica Sinica, 2022, 51(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm
    [9]
    Michalski M, Castleberry R H, Balboni J A, et al. Usage and Temperature Compensation of Performance Parameters for Night Vision Device: US20200203136A1[P]. 2020.
  • Related Articles

    [1]JIN Dan, LIU Xiaoguang, SHI Gang, SONG Renping, ZU Mingxia. Temperature Compensation for Infrared Detection of Carbon Dioxide Concentration[J]. Infrared Technology , 2023, 45(6): 671-677.
    [2]LI Yaqing, ZHOU Shengtao, WANG Guangfan, CHU Zhujun, DU Peide, ZHU Wenjin, LI Xiaolu, ZUO Jianing, ZHU Shicong. Research on Brightness Gain Temperature Characteristics of Super Gen. II Low-Light-Level Image Intensifier Using High-voltage DC Power Supply[J]. Infrared Technology , 2022, 44(8): 804-810.
    [3]YANG Qingzhi, WANG Yuxiang, XU Hong. Design of Portable Infrared thermometer and Temperature Compensation Technology[J]. Infrared Technology , 2021, 43(6): 597-606.
    [4]ZHI Qiang, NI Xiaobing, YAN Bo, YANG Ye, LI Junguo, YAO Ze. Design of a 16mm Image Intensifier MCP High Voltage Power Control Circuit[J]. Infrared Technology , 2017, 39(6): 564-566.
    [5]DUAN Liangfei, DUAN Yu, WANG Guanghua, ZHANG Xiaodan, DENG Rongbin, JI Huaxia. Research on High-Performance Composite Anode of Top-emitting OLED Devices[J]. Infrared Technology , 2017, 39(5): 457-462.
    [6]MAO Jingxiang, SHU Chang, WANG Xiaojuan, XIE Gang, HUANG Junbo, ZHOU Jiading. Computation of Dark Currents in Infrared Focal Plane Detector[J]. Infrared Technology , 2016, 38(3): 236-238.
    [7]ZHANG Yang, HUANG Yong-gang, LIU Hui, LI Guo-en. Progress in Anodic Aluminum Oxide Microchannel Plates[J]. Infrared Technology , 2012, 34(7): 427-432. DOI: 10.3969/j.issn.1001-8891.2012.07.010
    [8]YONG Chao-Liang, DUAN Dong, XU Chun, CHEN Fan-Sheng. The Study on the Dark Current of the Infrared Detector Measuring Method[J]. Infrared Technology , 2012, 34(4): 196-199. DOI: 10.3969/j.issn.1001-8891.2012.04.003
    [9]YU Li-jing, LI Yan-dong, XIN Si-shu, GUO Yu-hang, YANG Wen-yun. Interface Properties of Anodized InSb[J]. Infrared Technology , 2012, 34(4): 191-195. DOI: 10.3969/j.issn.1001-8891.2012.04.002
    [10]The Application of Current-Mode Technique in CMOS ROIC[J]. Infrared Technology , 2002, 24(2): 30-33. DOI: 10.3969/j.issn.1001-8891.2002.02.008
  • Cited by

    Periodical cited type(1)

    1. 李亚情,杨壮,高天礼,周盛涛,李晓露,宝元喜,杜培德,戴靖昊,何俊,张立昀,宋奇庚,王光凡,许灵吉,张旭. 自动门控电源对像增强器性能的影响. 红外技术. 2025(04): 421-428 . 本站查看

    Other cited types(0)

Catalog

    Article views (163) PDF downloads (57) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return