留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能超二代像增强器及发展

李晓峰 赵恒 张彦云 张勤东

李晓峰, 赵恒, 张彦云, 张勤东. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816.
引用本文: 李晓峰, 赵恒, 张彦云, 张勤东. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816.
LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, ZHANG Qindong. High Performance Super Second Generation Image Intensifier and Its Further Development[J]. Infrared Technology , 2021, 43(9): 811-816.
Citation: LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, ZHANG Qindong. High Performance Super Second Generation Image Intensifier and Its Further Development[J]. Infrared Technology , 2021, 43(9): 811-816.

高性能超二代像增强器及发展

基金项目: 

国家自然科学基金 11535014

详细信息
    作者简介:

    李晓峰(1963-),男,正高级工程师,博士,主要研究方向为微光夜视技术。E-mail: 984118295@qq.com

  • 中图分类号: TN223, Q462.3

High Performance Super Second Generation Image Intensifier and Its Further Development

  • 摘要: 本文介绍了高性能超二代像增强器的技术特征及性能,并与普通超二代像增强器进行了比较,提出了进一步改进高性能超二代像增强器性能的技术途径。超二代像增强器是在二代像增强器基础上,采用新技术、新工艺和新材料而发展起来的,性能较二代像增强器有大幅提升。近年来,超二代像增强器由于使用了光栅窗,性能又有了进一步的提升。光栅窗的使用,增加了Na2KSb光电阴极膜层的吸收系数,使阴极灵敏度达到1000 μA·lm-1以上,10-4 lx照度条件下的分辨力达到17 lp·mm-1以上。可以预计,通过进一步优化和改进Na2KSb光电阴极膜层的制作工艺,同时进一步优化光栅窗的结构,提高光栅窗的增强系数,那么Na2KSb光电阴极的灵敏度将会达到1350~1800 μA·lm-1,信噪比达到35~40;通过4 μm小丝径MCP以及3 μm光纤面板的应用,分辨力将会达到81 lp·mm-1以上。
  • 图  1  高性能超二代像增强器的光电阴极结构示意图

    Figure  1.  Schematic diagram of photocathode for super second generation image intensifier with high performance

    Input photon, 2. Glass window, 3. Diffraction grating, 4. Emission electron, 5. Photocathode, 6. Vacuum interface, 7. Photocathode interface, 8. Diffracting photon, 9. Reflection photon

    图  2  不同阴极窗的光电阴极光谱分布

    Figure  2.  Spectral distribution of photocathode on different windows

    图  3  光晕形成的原理示意图

    Figure  3.  Schematic diagram of halo generation

    1. Input window, 2. Photocathode, 3. Input end of MCP, 4. MCP, 5. Phosphor screen, 6. Fiber optical Plate, 7. Reflection light, 8. Photoelectron, 9. Output electron, 10. Bright spot, 11. Halo

    图  4  不同型号像增强器光晕比较

    Figure  4.  Halo comparison of different image intensifier

    图  5  不同型号像增强器分辨力比较

    Figure  5.  Resolution comparison of different image intensifier

    图  6  光电阴极结构示意图

    Figure  6.  Schematic diagram of structure for photocathode

    1. Glass window, 2. Na2KSb layer, 3. Cs3Sb layer

    表  1  不同光电阴极灵敏度及逸出功

    Table  1.   Sensitivity and work function of different cathode

    Sample Sensitivity/(μA·lm-1) Threshold/nm Work function/eV
    0615# 582 950 1.30
    6495# 917 950 1.30
    7650# 702 955 1.29
    8550# 748 950 1.30
    下载: 导出CSV
  • [1] LIU Qiankun, LIU Lei, DENG Yubin, et al. Apparent distance theory vision for low-light-level night vision system based on noise factor[J]. Optical and Quantum Electronics, 2017, 49(7): 249-264. doi:  10.1007/s11082-017-1087-3
    [2] 金伟其, 张琴, 王霞, 等. 一种改进的直视型微光夜视系统视距模型[J]. 光子学报, 2020, 49(4): 0411001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202004007.htm

    JIN Weiqi, ZHANG Qin, WANG Xia, et al. An improved apparent distance model for direct-view low-light-level night vision system[J]. Acta Photonica Sinica, 2020, 49(4): 0411001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202004007.htm
    [3] LU Nianhua, YANG Yigang, LIU Jingwen, et al. Neutron detector design based on ALD coated MCP[J]. Physics Procedia, 2012, 26: 110-115. http://www.onacademic.com/detail/journal_1000035076227310_cf7b.html
    [4] Pranav Gupta, Luca Cultrera, Ivan Bazarov. Monte Carlo simulations of electron photoemission from cesium antimonide[J]. Journal of Applied Physics, 2017, 121(21): 215702. doi:  10.1063/1.4984263
    [5] Dimitrov D A, Bell G I, Smedley J, et al. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes[J]. Journal of Applied Physics, 2017, 122(16): 165303. doi:  10.1063/1.4996568
    [6] Siddharth Karkare, Dimitre Dimitrov, William Schaff, et al. Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes[J]. Journal of Applied Physics, 2013, 113(10): 104904. doi:  10.1063/1.4794822
    [7] Sinor T W, Estera J P. An analysis of electron scattering in the thin dieelectric films used as ion barriers in generation Ⅲ image tubes[C]//SPIE, 2003, 4796: 23-32.
    [8] Estera J P, FORD C E, Giordana A, et al. High reliability GaAs image intensifier with unfilmed microchannel plate[C]//SPIE, 1999, 3749: 713-714.
    [9] BOSCH L A. Image intensifier tube performance is what matters[C]//SPIE, 2000, 4128: 65-78.
    [10] Gert Nutzel, Pascal Lavout. Sem-transparent photocathode with improved absorption rate: US, 9960004B2[P]. 2018-005-01.
    [11] 格特·怒茨泽尔, 帕斯卡尔·拉武特. 具有改善吸收率的半透明的光电阴极: CN, 104781903A[P]. 2015-07-15.

    Gert Nutzel, Pascal Lavout. Sem-transparent photocathode with improved absorption rate: CN, 104781903A[P]. 2015-07-15.
    [12] 钱芸生, 常本康, 童默颖, 等. 像增强器噪声频谱特性测试技术研究[J]. 光学学报, 2003, 23(1): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200301015.htm

    QIAN Yunsheng, CHANG Benkang, TONG Moying, et al. Frequency spectrum measurement of noise of image intensifiers[J]. ACTA Optica Sinica, 2003, 23(1): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200301015.htm
    [13] 崔东旭, 郑少成, 邱亚峰, 等. 微通道板的输出信噪比特性研究[J]. 真空科学与技术学报, 2012, 32(6): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201206005.htm

    CUI Dongxu, ZHENG Shaocheng, QIU Yafeng, et al. Output signal-to-noise ratio characteristics of microchannel plate[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(6): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201206005.htm
    [14] 李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm

    LI Xiaofeng, CHANG Le, ZEN Jinneng, et al. Study on resolution improvement of microchannel plate[J]. Acta Photonica Sinica, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
    [15] 李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm

    LI Xiaofeng, LI Tingtao, ZEN Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica, 2019, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
    [16] 向世明. 双近贴聚焦超二代微光像增强器分辨力理论极限问题研究[J]. 应用光学, 2008, 29(3): 351-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200803007.htm

    XIANG Shiming. Study on theory limitation of resolution for double proximity focued super second generation image intensifier[J]. Applied Optics, 2008, 29(3): 351-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200803007.htm
    [17] 向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 1999.

    XIANG Shiming, NI Guoqiang. Principle of Optoelectronic Imaging Device[M]. Beijing: National Defence Industry Press, 1999.
    [18] 潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202006001.htm

    PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202006001.htm
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  25
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2020-11-11
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回

    《红外技术》网站维护通知

    尊敬的专家、作者、读者:

    国庆假期期间(10月1日-3日)因设备维护,《红外技术》网站(hwjs.nvir.cn)将于2021年9月30日18:00-10月4日13:00关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    《红外技术》编辑部

    2021年9月29日