Volume 47 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LI Yaqing, ZHOU Shengtao, WANG Guangfan, CHU Zhujun, DU Peide, ZHU Wenjin, LI Xiaolu, ZUO Jianing, ZHU Shicong. Research on Brightness Gain Temperature Characteristics of Super Gen. II Low-Light-Level Image Intensifier Using High-voltage DC Power Supply[J]. Infrared Technology , 2022, 44(8): 804-810.
Citation: LI Yaqing, ZHOU Shengtao, WANG Guangfan, CHU Zhujun, DU Peide, ZHU Wenjin, LI Xiaolu, ZUO Jianing, ZHU Shicong. Research on Brightness Gain Temperature Characteristics of Super Gen. II Low-Light-Level Image Intensifier Using High-voltage DC Power Supply[J]. Infrared Technology , 2022, 44(8): 804-810.

Research on Brightness Gain Temperature Characteristics of Super Gen. II Low-Light-Level Image Intensifier Using High-voltage DC Power Supply

  • Received Date: 2022-05-11
  • Rev Recd Date: 2022-06-07
  • Publish Date: 2022-08-20
  • Aiming at the problem that the brightness gains of super Gen. Ⅱ image intensifiers, equipped with high-voltage DC power supplies, substantially decrease at high temperatures, according to the theoretical analysis, this study developed high and low temperature test platforms to study the temperature characteristics of an image intensifier with a high-voltage DC power supply, an image intensifier tube, and a single high-voltage DC power supply. The experimental results show that the brightness gain of this type of image intensifier at a high temperature (55℃) decreased by approximately 65% than that at a low temperature (-55℃). However, on supplying constant cathode, MCP, and anode voltages to the image intensifier tube, the brightness gain decreased by 20%, which was mainly due to the decrease in the cathode sensitivity and luminous efficiency of the fluorescent screen with the increase in temperature. Compared with low temperature (-55℃), t he cathode voltage of the high-voltage DC power supply was reduced by approximately 40 V at high temperature (55℃), whereas the MCP and anode voltages were reduced by approximately 18 and 100 V, respectively. These three factors accelerated the attenuation of the brightness gain of the image intensifier at high temperatures. Therefore, compensating the cathode, MCP, and anode voltages using software and/or hardware to the power supply can be an effective method to improve the brightness gain consistency of super Gen. Ⅱ image intensifiers with a high-voltage DC power supply at various temperatures.
  • loading
  • [1]
    孙默涵, 钱芸生, 任莹楠, 等. 基于自动亮度控制模型的门控型微光像增强器荧光屏亮度研究[J]. 光子学报, 2022, 51(3): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203014.htm

    SUN Mohan, QIAN Yunsheng, REN Yingnan, et al. Brightness of the screen of gated low light level image intensifier based on automatic brightness control model[J]. Acta Photonica Sinica, 2022, 51(3): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203014.htm
    [2]
    李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189

    LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
    [3]
    潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001

    PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
    [4]
    金伟其, 张琴, 王霞, 等. 一种改进的直视型微光夜视系统视距模型[J]. 光子学报, 2020, 49(4): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202004007.htm

    JIN Weiqi, ZHANG Qin, WANG Xia, et al. An improved apparent distance model for direct-view low-light-level night vision system[J]. Acta Photonica Sinica, 2020, 49(4): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202004007.htm
    [5]
    杨壮, 唐钦, 李璀, 等. 某型混联微光像增强器增益漂移问题研究[J]. 兵工自动化, 2020, 39(11): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD202011005.htm

    YANG Zhuang, TANG Qing, LI Chui, et al. Research on gain drift of certain type hybrid image intensifier[J]. Ordnance Industry Autonation, 2020, 39(11): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD202011005.htm
    [6]
    李晓峰, 杜木林, 徐传平, 等. 影响超二代像增强器最高增益的因数分析[J]. 光子学报, 2022, 51(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm

    LI Xiaofeng, DU Mulin, XU Chuanping, et al. Analysis on factors affecting the maximum gain of super second generation image intensifier[J]. Acta Photonica Sinica, 2022, 51(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm
    [7]
    白廷柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2006.

    BAI Tingzhu, JIN Weiqi. Principle and Technology of Photoelectric Imaging[M]. Beijing: Beijing Institute of Technology Press, 2006.
    [8]
    向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006.

    XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Device[M]. Beijing: National Defense Industry Press, 2006.
    [9]
    李晓峰, 常乐, 赵恒, 等. 超二代与三代像增强器低照度分辨力的比较[J]. 光子学报, 2021, 50(9): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109030.htm

    LI Xiaofeng, CHANG Le, ZHAO Heng, et al. Comparison of resolution between super Gen. Ⅱ and Gen. Ⅲ image intensifier[J]. Acta Photonica Sinica, 2021, 50(9): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109030.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (198) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return