Citation: | HE Qiuhong, YU Wei, GUO Zhilin, YUAN Lianhai, LIU Yuying. No-reference Quality Evaluation Algorithm for Color Gamut Mapped Images Based on Double-Order Color Information[J]. Infrared Technology , 2025, 47(3): 316-325. |
Gamut mapping is a technology used to achieve high-fidelity transmission of color images between different devices. However, an image obtained through gamut mapping inevitably produces serious artifacts and distortions because of color information loss, which leads to distortions in texture and color naturalness. Since color information loss is serious in gamut mapped images (GMIs), a no-reference quality evaluation method based on double-order color representation is proposed. Many traditional image quality assessment (IQA) methods extract quality-aware features (QAFs) in the gray domain, and a few IQA methods extract QAFs from color components, such as hue and saturation. Hue and saturation were calculated linearly using the R, G, and B color components while ignoring the derivative information of the color. Therefore, this study extracted features from zero-order (R, G, and B components) and first-order (derivative) color information. These features were then used for regression training to obtain a quality prediction model. Experimental results show that the model is superior to existing no-reference quality evaluation methods in predicting the quality of GMIs.
[1] |
LI H L, ZHAO H X, LIU M N, et al. Research on spatial gamut mapping from source device to destination device[C]//2023 IEEE 18th Conference on Industrial Electronics and Applications. 2023: 1909-1914.
|
[2] |
Zamir S W, Vazquez Corral J, Bertalmio M. Vision models for wide color gamut imaging in cinema[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1777-1790. DOI: 10.1109/TPAMI.2019.2938499
|
[3] |
Takeuchi M, Sakamoto Y, Yokoyama R. Gamut-extension methods considering color information restoration[J]. IEEE Access, 2019, 7: 80146-80158. DOI: 10.1109/ACCESS.2019.2923400
|
[4] |
Prashanth N, Dattathreya, Manjunath P, et al. High Dynamic Range (HDR) Imaging using Color Gamut Mapping[C]//2018 4th International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), 2018: 2104-2112.
|
[5] |
KIM J O, LEE K, KIM J, et al. Ambient light robust color gamut mapping for optical see-through displays[J]. Optics Express, 2020, 28(10): 15392-15405. DOI: 10.1364/OE.391447
|
[6] |
ZHOU W, WANG Z. Blind omnidirectional image quality assessment: integrating local statistics and global semantics[C]//2023 IEEE International Conference on Image Processing, 2023: 1405-1409.
|
[7] |
李佳, 郑元林, 廖开阳, 等. 基于显著性深层特征的无参考图像质量评价算法[J]. 计算机应用, 2022, 42(6): 1957-1964.
LI Jia, ZHENG Yuanlin, LIAO Kaiyang, et al. No-reference image quality assessment algorithm based on saliency deep features[J]. Journal of Computer Applications, 2022, 42(6): 1957-1964.
|
[8] |
CAI H, LI L D, YI Z L, et al. Towards a blind image quality evaluator using multi-scale second-order statistics[J]. Signal Processing: Image Communication, 2019, 71: 88-99. DOI: 10.1016/j.image.2018.11.003
|
[9] |
杨国梁, 苏俊宏, 薛鹏翔, 等. 基于深度学习网络的可见光图像重构质量评价研究[J]. 激光杂志, 2022, 43(1): 95-100.
YANG Guoliang, SU Junhong, XUE Pengxiang, et al. Evaluation of visible image reconstruction quality based on deep learning network[J]. Laser Journal, 2022, 43(1): 95-100.
|
[10] |
柴改霞, 郭全民, 孙晓娟. 可见光与红外融合的汽车抗晕光图像评价方法[J]. 红外技术, 2020, 42(4): 378-384. http://hwjs.nvir.cn/article/id/hwjs202004011
CHAI Gaixia, GUO Quanmin, SUN Xiaojuan. Vehicle anti-halation image evaluation method based on visible and infrared fusion[J]. Infrared Technology, 2020, 42(4): 378-384. http://hwjs.nvir.cn/article/id/hwjs202004011
|
[11] |
Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions Image Processing, 2012, 21(12): 4695-4708. DOI: 10.1109/TIP.2012.2214050
|
[12] |
ZHANG Y, Chandler D M. No-reference image quality assessment based on log-derivative statistics of natural scenes[J]. Journal of Electronic Imaging, 2013, 22(4): 043025. DOI: 10.1117/1.JEI.22.4.043025
|
[13] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. DOI: 10.1109/TIP.2003.819861
|
[14] |
余伟, 徐晶晶, 刘玉英, 等. 基于自然场景统计的色域映射图像无参考质量评价[J]. 激光与光电子学进展, 2020, 57(14): 61-70.
YU Wei, XU Jingjing, LIU Yuying, et al. No-reference quality evaluation for gamut mapping images based on natural scene statistics[J]. Laser & Optoelectronics Progress, 2020, 57(14): 61-70.
|
[15] |
CAI H, LI L D, YI Z L, et al. Blind quality assessment of gamut-mapped images via local and global statistical analysis[J]. Journal of Visual Communication & Image Representation, 2019, 61(5): 250-259.
|
[16] |
余伟, 康凯, 袁连海. 基于颜色与结构失真的色域映射图像无参考质量评价算法[J]. 计算机应用研究, 2021, 38(8): 2549-2555.
YU Wei, KANG Kai, YUAN Lianhai. No-reference quality evaluation algorithm for gamut mapping images based on color and structural distortions[J]. Application Research of Computers, 2021, 38(8): 2549-2555.
|
[17] |
JAMES F P. 计算机视觉基础[M]. 章毓晋, 译. 北京: 清华大学出版社, 2019: 21-27.
JAMES F P. Foundations of Computer Vision[M]. ZHANG YuJin, translated. Beijing: TsingHua University Press, 2019: 21-27.
|
[18] |
LEE D, Plataniotis K N. Toward a no-reference image quality assessment using statistics of perceptual color descriptors[J]. IEEE Transactions on Image Processing, 2016, 25(8): 3875-3889.
|
[19] |
TAN M T, Ryu S. Particle number fluctuations, Rényi entropy, and symmetry-resolved entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization[J]. Physical Review B, 2020, 101(23): 2469-2450.
|
[20] |
Estanon C R, Aquino N, Puertas-Centeno D, et al. Two-dimensional confined hydrogen: An entropy and complexity approach[J]. International Journal of Quantum Chemistry, 2020, 120(11): 1596-1605.
|
[21] |
ZHOU Y, LI L D, WU J J, et al. Blind quality index for multiply distorted images using biorder structure degradation and nonlocal statistics[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3019-3032. DOI: 10.1109/TMM.2018.2829607
|
[22] |
吴圳桦, 唐文艳, 吕文阁, 等. 基于ISSA何积分图的二维熵图像多阈值分割快速算法[J]. 广东工业大学学报, 2023, 40(5): 47-55.
WU Zhenhua, TANG Wenyan, LYU Wenge, et al, Fast image segmentation with multilevel threshold of twodimensional entropy based on issa and integral graph[J]. Journal of Guangdong University of Technology, 2023, 40(5): 47-55.
|
[23] |
胡涛. 基于图像二维熵的路面纹理边缘分布均匀性检测方法研究[D]. 武汉: 武汉科技大学, 2023: 15-17.
HU Tao. Research on Detection Method of Pavement Texture Edge Distribution Uniformity Based on Two-Dimensional Image Entropy[D]. Wuhan: Wuhan University of Science and Technology, 2023: 15-17.
|
[24] |
FANG Y M, MA K D, WANG Z, et al. No-reference quality assessment of contrast-distorted images based on natural scene statistics[J]. IEEE Signal Processing Letters, 2015, 22(7): 838-842.
|
[25] |
ZHOU Y, LI L D, ZHU H C, et al, No-reference quality assessment for contrast-distorted images based on multifaceted statistical representation of structure[J]. Journal of Visual Communication and image Representation, 2019, 60: 158-169.
|
[26] |
WANG W, LIANG R, QI Y, et al, Prediction model of spontaneous combustion risk of extraction borehole based on PSO-BPNN and its application[J]. Scientific Reports, 2024, 14(1): 577-581.
|
[27] |
Baranczuk Z, Zolliker P, Image-Individualized Gamut Mapping Algorithms[J]. Journal of Imaging Science & Technology, 2010, 54(3): 0302011-0302017.
|
[28] |
余伟. 色域映射图像客观质量评价方法研究[D]. 徐州: 中国矿业大学, 2020: 17-29.
YU Wei. Study on Objective Quality Evaluation Method of Gamut Mapped Images[D]. Xuzhou: China University of Mining and Technology, 2020: 17-29.
|
[29] |
GU K, ZHAI G T, YANG X K, et al. Using free energy principle for blind image quality assessment[J]. IEEE Transaction on Multimedia, 2015, 11(1): 50-63.
|
[30] |
FANG Y M, YAN J B, DU R G et al. Blind quality assessment for tone-mapped images by analysis of gradient and chromatic statistics[J]. IEEE Transactions on Multimedia, 2021, 23: 955-966.
|
[1] | YE Ye. A Deep Learning Method for Hyperspectral Detection of Heavy Metal Contaminants in Soil Based on Attention Mechanism[J]. Infrared Technology , 2025, 47(4): 453-458. |
[2] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[3] | LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379. |
[4] | WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014. |
[5] | ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451. |
[6] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[7] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[8] | WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177. |
[9] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |
[10] | WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271. |