Citation: | CHEN Gao, WANG Weihua, LIN Dandan. Infrared Vehicle Target Detection Based on Convolutional Neural Network without Pre-training[J]. Infrared Technology , 2021, 43(4): 342-348. |
[1] |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. DOI: 10.1109/TSMC.1979.4310076
|
[2] |
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
|
[3] |
Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. DOI: 10.1023/A:1018628609742
|
[4] |
REN S, HE K, Girshick R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149 DOI: 10.1109/TPAMI.2016.2577031
|
[5] |
QIN Z, LI Z, ZHANG Z, et al. ThunderNet: Towards real-time generic object detection on mobile devices[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 6718-6727.
|
[6] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
[7] |
DUAN K, BAI S, XIE L, et al. Centernet: keypoint triplets for object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 6569-6578.
|
[8] |
TANG T, ZHOU S, DENG Z, et al. Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining[J]. Sensors, 2017, 17(2): 336. DOI: 10.3390/s17020336
|
[9] |
DENG J, DONG W, Socher R, et al. Imagenet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255.
|
[10] |
LIN T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context[C]//Proceedings of the European Conference on Computer Vision, 2014: 740-755.
|
[11] |
Redmon J, Farhadi A. YOLOv3: An incremental improvement[DB/OL]. https://arxiv.org/abs/1804.02767.2020-0703.
|
[12] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
[13] |
Woo S, Park J, Lee J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany: Springer, 2018: 3-19.
|
[14] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[15] |
Krishna K, Murty M N. Genetic K-means algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(3): 433-439. DOI: 10.1109/3477.764879
|
1. |
火久元,苏泓瑞,武泽宇,王婷娟. 基于改进YOLOv8的道路交通小目标车辆检测算法. 计算机工程. 2025(01): 246-257 .
![]() | |
2. |
应保胜,刘畅然,熊豪,石兵华,许小伟. 基于改进GAN的图像去雨方法及其在车辆检测上的应用. 计算机应用与软件. 2025(03): 183-189 .
![]() | |
3. |
沈凌云,郎百和,宋正勋,温智滔. 基于DCS-YOLOv8模型的红外图像目标检测方法. 红外技术. 2024(05): 565-575 .
![]() | |
4. |
聂磊,武丽丽,黄一凡,刘梦然,刘江林. 基于红外图像分析的TSV内部缺陷识别方法研究. 仪表技术与传感器. 2023(01): 38-43 .
![]() | |
5. |
曹紫绚,刘刚,张文波,刘森,刘中华. 改进回归损失的深度学习单阶段红外飞机检测. 电光与控制. 2023(04): 28-33 .
![]() | |
6. |
张梦颖,耿蕊. 红外车辆检测中的深度特征处理技术综述. 激光杂志. 2023(09): 11-18 .
![]() | |
7. |
张睿,李允臣,王家宝,李阳,苗壮. 基于深度学习的红外目标检测综述. 计算机技术与发展. 2023(11): 1-8 .
![]() | |
8. |
车启谣,严运兵. 基于改进YOLOv3的行人检测研究. 智能计算机与应用. 2022(08): 8-13 .
![]() | |
9. |
梁秀满,邵彭娟,刘振东,赵恒斌. 自适应特征融合的轻量级交通标志检测方法. 电子测量技术. 2022(23): 107-112 .
![]() | |
10. |
汤双霞. 基于TensorFlow.js和JSDoop的神经网络训练. 信息技术与信息化. 2021(07): 68-69+75 .
![]() |