Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
YUAN Xilin, ZHANG Baohui, ZHANG Qian, HE Ming, ZHOU Jinjie, LIAN Cheng, YUE Jiang. Infrared Images with Super-resolution Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2023, 45(5): 498-505.
Citation: YUAN Xilin, ZHANG Baohui, ZHANG Qian, HE Ming, ZHOU Jinjie, LIAN Cheng, YUE Jiang. Infrared Images with Super-resolution Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2023, 45(5): 498-505.

Infrared Images with Super-resolution Based on Deep Convolutional Neural Network

  • Received Date: 2022-12-30
  • Rev Recd Date: 2023-02-20
  • Publish Date: 2023-05-20
  • Owing to technical limitations regarding the device and process, the resolution of infrared images is relatively low compared to that of visible images, and deficiencies occur such as blurred textural features. In this study, we proposed a super-resolution reconstruction method based on a deep convolutional neural network (CNN) for infrared images. The method improves the residual module, reduces the influence of the activation function on the information flow while deepening the network, and makes full use of the original information of low-resolution infrared images. Combined with an efficient channel attention mechanism and channel-space attention module, the reconstruction process selectively captures more feature information and facilitates a more accurate reconstruction of the high-frequency details of infrared images. The experimental results show that the peak signal-to-noise ratio (PSNR) of the infrared images reconstructed using this method outperforms those of the traditional Bicubic interpolation method, as well as the CNN-based SRResNet, EDSR, and RCAN models. When the scale factor is ×2 and ×4, the average PSNR values of the reconstructed images improved by 4.57 and 3.37 dB, respectively, compared with the traditional Bicubic interpolation method.
  • loading
  • [1]
    Baker S, Kanade T. Limits on super resolution and how to break them[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(9): 1167-1183. http://www.onacademic.com/detail/journal_1000035551419310_c5fb.html
    [2]
    Hou H, Andrews H. Cubic splines for image interpolation and digital filtering[J]. IEEE Transactions on acoustics, speech, and signal processing, 1978, 26(6): 508-517. doi:  10.1109/TASSP.1978.1163154
    [3]
    Freeman W T, Pasztor E C, Carmichael O T. Learning low-level vision[J]. International Journal of Computer Vision, 2000, 40(1): 25-47. doi:  10.1023/A:1026501619075
    [4]
    YANG J, Wright J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE transactions on image processing, 2010, 19(11): 2861-2873. doi:  10.1109/TIP.2010.2050625
    [5]
    DONG C, Loy C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 38(2): 295-307. doi:  10.1109/TPAMI.2015.2439281
    [6]
    DONG C, Loy C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the European conference on computer vision (ECCV), 2016: 391-407.
    [7]
    SHI W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883.
    [8]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
    [9]
    Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4681-4690.
    [10]
    Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.
    [11]
    ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 286-301.
    [12]
    DAI T, CAI J, ZHANG Y, et al. Second-order attention network for single image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11065-11074.
    [13]
    NIU B, WEN W, REN W, et al. Single image super-resolution via a holistic attention network[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2020: 191-207.
    [14]
    Choi Y, Kim N, Hwang S, et al. Thermal image enhancement using convolutional neural network[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016: 223-230.
    [15]
    HE Z, TANG S, YANG J, et al. Cascaded deep networks with multiple receptive fields for infrared image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(8): 2310-2322. http://www.xueshufan.com/publication/2886209123
    [16]
    ZOU Y, ZHANG L, LIU C, et al. Super-resolution reconstruction of infrared images based on a convolutional neural network with skip connections[J]. Optics and Lasers in Engineering, 2021, 146: 106717. doi:  10.1016/j.optlaseng.2021.106717
    [17]
    YU J, FAN Y, YANG J, et al. Wide activation for efficient and accurate image super-resolution[J/OL]. arXiv preprint arXiv: 1808.08718, 2018.
    [18]
    WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (183) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return