YUAN Xilin, ZHANG Baohui, ZHANG Qian, HE Ming, ZHOU Jinjie, LIAN Cheng, YUE Jiang. Infrared Images with Super-resolution Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2023, 45(5): 498-505.
Citation: YUAN Xilin, ZHANG Baohui, ZHANG Qian, HE Ming, ZHOU Jinjie, LIAN Cheng, YUE Jiang. Infrared Images with Super-resolution Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2023, 45(5): 498-505.

Infrared Images with Super-resolution Based on Deep Convolutional Neural Network

More Information
  • Received Date: December 29, 2022
  • Revised Date: February 19, 2023
  • Owing to technical limitations regarding the device and process, the resolution of infrared images is relatively low compared to that of visible images, and deficiencies occur such as blurred textural features. In this study, we proposed a super-resolution reconstruction method based on a deep convolutional neural network (CNN) for infrared images. The method improves the residual module, reduces the influence of the activation function on the information flow while deepening the network, and makes full use of the original information of low-resolution infrared images. Combined with an efficient channel attention mechanism and channel-space attention module, the reconstruction process selectively captures more feature information and facilitates a more accurate reconstruction of the high-frequency details of infrared images. The experimental results show that the peak signal-to-noise ratio (PSNR) of the infrared images reconstructed using this method outperforms those of the traditional Bicubic interpolation method, as well as the CNN-based SRResNet, EDSR, and RCAN models. When the scale factor is ×2 and ×4, the average PSNR values of the reconstructed images improved by 4.57 and 3.37 dB, respectively, compared with the traditional Bicubic interpolation method.
  • [1]
    Baker S, Kanade T. Limits on super resolution and how to break them[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(9): 1167-1183. http://www.onacademic.com/detail/journal_1000035551419310_c5fb.html
    [2]
    Hou H, Andrews H. Cubic splines for image interpolation and digital filtering[J]. IEEE Transactions on acoustics, speech, and signal processing, 1978, 26(6): 508-517. DOI: 10.1109/TASSP.1978.1163154
    [3]
    Freeman W T, Pasztor E C, Carmichael O T. Learning low-level vision[J]. International Journal of Computer Vision, 2000, 40(1): 25-47. DOI: 10.1023/A:1026501619075
    [4]
    YANG J, Wright J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE transactions on image processing, 2010, 19(11): 2861-2873. DOI: 10.1109/TIP.2010.2050625
    [5]
    DONG C, Loy C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 38(2): 295-307. DOI: 10.1109/TPAMI.2015.2439281
    [6]
    DONG C, Loy C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the European conference on computer vision (ECCV), 2016: 391-407.
    [7]
    SHI W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883.
    [8]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
    [9]
    Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4681-4690.
    [10]
    Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.
    [11]
    ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 286-301.
    [12]
    DAI T, CAI J, ZHANG Y, et al. Second-order attention network for single image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11065-11074.
    [13]
    NIU B, WEN W, REN W, et al. Single image super-resolution via a holistic attention network[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2020: 191-207.
    [14]
    Choi Y, Kim N, Hwang S, et al. Thermal image enhancement using convolutional neural network[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016: 223-230.
    [15]
    HE Z, TANG S, YANG J, et al. Cascaded deep networks with multiple receptive fields for infrared image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(8): 2310-2322. http://www.xueshufan.com/publication/2886209123
    [16]
    ZOU Y, ZHANG L, LIU C, et al. Super-resolution reconstruction of infrared images based on a convolutional neural network with skip connections[J]. Optics and Lasers in Engineering, 2021, 146: 106717. DOI: 10.1016/j.optlaseng.2021.106717
    [17]
    YU J, FAN Y, YANG J, et al. Wide activation for efficient and accurate image super-resolution[J/OL]. arXiv preprint arXiv: 1808.08718, 2018.
    [18]
    WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
  • Related Articles

    [1]ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366.
    [2]LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379.
    [3]WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014.
    [4]LIU Xiaopeng, ZHANG Tao. Global-Local Attention-Guided Reconstruction Network for Infrared Image[J]. Infrared Technology , 2024, 46(7): 791-801.
    [5]DI Jing, LIANG Chan, REN Li, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism[J]. Infrared Technology , 2024, 46(7): 754-764.
    [6]ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451.
    [7]LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.
    [8]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [9]LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574.
    [10]WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271.
  • Cited by

    Periodical cited type(2)

    1. 赵洪山,王惠东,刘婧萱,杨伟新,李忠航,林诗雨,余洋,吕廷彦. 考虑局部纹理特征和全局温度分布的电力设备红外图像超分辨率重建方法. 电力系统保护与控制. 2025(02): 89-99 .
    2. 徐浙君. 基于优化深度学习的低照度图像超分辨率重建方法的研究. 科技通报. 2024(04): 39-43+53 .

    Other cited types(2)

Catalog

    Article views (233) PDF downloads (76) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return