ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.
Citation: ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.

Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm

More Information
  • Received Date: February 05, 2023
  • Revised Date: March 30, 2023
  • To address the low detection accuracy and poor robustness of infrared images compared with visible images, a multiscale object detection network YOLO-MIR(YOLO for multiscale IR images) for infrared images is proposed. First, to increase the adaptability of the network to infrared images, the feature extraction and fusion modules were improved to retain more details in the infrared images. Second, the detection ability of multiscale objects is enhanced, the scale of the fusion network is increased, and the fusion of infrared image features is facilitated. Finally, a data augmentation algorithm for infrared images was designed to increase the network robustness. Ablation experiments were conducted to evaluate the impact of different methods on the network performance, and the results show that the network performance was significantly improved using the infrared dataset. Compared with the prevalent algorithm YOLOv7, the average detection accuracy of this algorithm was improved by 3%, the adaptive ability to infrared images was improved, and the accurate detection of targets at various scales was realized.
  • [1]
    Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2014: 580-587.
    [2]
    Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 779-788.
    [3]
    LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector[J/OL]. arXiv preprint arXiv, 2017, https://arxiv.org/abs/1712.00960.
    [4]
    Redmon J, Farhadi A. Yolov3: An incremental improvement[J/OL]. arXiv preprint arXiv, 2018, https://arxiv.org/abs/1804.02767.
    [5]
    Jocher G, Chaurasia A, Stoken A, et al. ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference[Z/OL]. 2022, https://doi.org/10.5281/ZENODO.6222936.
    [6]
    [7]
    WANG C Y, Bochkovskiy A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv preprint arXiv, 2022, https://arxiv.org/abs/2207.02696.
    [8]
    LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 8759-8768.
    [9]
    Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]// Conference on Computer Vision & Pattern Recognition. IEEE, 2017: 6517-6525.
    [10]
    REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. http://pubmed.ncbi.nlm.nih.gov/27295650/
    [11]
    He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
    [12]
    ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586. http://www.xueshufan.com/publication/3194790201
    [13]
    Veit A, Matera T, Neumann L, et al. Coco-text: Dataset and benchmark for text detection and recognition in natural images[J]. arXiv preprint arXiv, 2016, https://arxiv.org/abs/1601.07140.
    [14]
    Smith A R. Color gamut transform pairs[J]. ACM Siggraph Computer Graphics, 1978, 12(3): 12-19. DOI: 10.1145/965139.807361
    [15]
    Zhou Z, Cao J, Wang H, et al. Image denoising algorithm via doubly bilateral filtering[C]// International Conference on Information Engineering and Computer Science. IEEE, 2009: 1-4.
    [16]
    Hoiem D, Divvala S K, Hays J H. Pascal VOC 2008 challenge[J]. Computer Science, 2009 https://www.semanticscholar.org/paper/Pascal-VOC-2008-Challenge-Hoiem-Divvala/9c327cf1bb8435a8fba27b6ace50bb907078d8d1.
    [17]
    ZHAO W Y. Discriminant component analysis for face recognition[C]//Proceedings 15th International Conference on Pattern Recognition, IEEE, 2000, 2: 818-821.
    [18]
    Venkataraman V, FAN G, FAN X. Target tracking with online feature selection in FLIR imagery[C]// IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007: 1-8.
    [19]
    CHEN R, LIU S, MU J, et al. Borrow from source models: efficient infrared object detection with limited examples[J]. Applied Sciences, 2022, 12(4): 1896. DOI: 10.3390/app12041896
    [20]
    Kera S B, Tadepalli A, Ranjani J J. A paced multi-stage block-wise approach for object detection in thermal images[J]. The Visual Computer, 2022, https://doi.org/10.1007/s00371-022-02445-x.
    [21]
    Vadidar M, Kariminezhad A, Mayr C, et al. Robust Environment Perception for Automated Driving: A Unified Learning Pipeline for Visual-Infrared Object Detection[C]// IEEE Intelligent Vehicles Symposium (Ⅳ). IEEE, 2022: 367-374.
  • Related Articles

    [1]GONG Jiamin, ZHANG Lei, LIU Shanghui, JIANG Jiewei, JIN Ku. Image Fusion Based on Simplified Two-Dimensional Kaniadakis Entropy Segmentation Algorithm and Fast Guided Filtering[J]. Infrared Technology , 2025, 47(2): 201-210.
    [2]JIANG Jiewei, LIU Shanghui, JIN Ku, LIU Haiyang, WEI Xumeng, GONG Jiamin. Infrared and Visible-Light Image Fusion Based on FCM and Guided Filtering[J]. Infrared Technology , 2023, 45(3): 249-256.
    [3]HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088.
    [4]CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403.
    [5]CHENG Tiedong, LU Xiaoliang, YI Qiwen, TAO Zhengliang, ZHANG Zhizhao. Research on Infrared Image Enhancement Method Combined with Single-scale Retinex and Guided Image Filter[J]. Infrared Technology , 2021, 43(11): 1081-1088.
    [6]HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915.
    [7]GE Peng, YANG Bo, HAN Qinglin, LIU Peng, CHEN Shugang, HU Douming, ZHANG Qiaoyan. Infrared Image Detail Enhancement Algorithm Based on Hierarchical Processing by Guided Image Filter[J]. Infrared Technology , 2018, 40(12): 1161-1169.
    [8]GAN Ling, ZHANG Qianwen. Image Fusion Method Combining Non-subsampled Contourlet Transform and Guide Filtering[J]. Infrared Technology , 2018, 40(5): 444-448,454.
    [9]GE Peng, YANG Bo, MAO Wenbiao, CHEN Shaolin, ZHANG Qiaoyan, HAN Qinglin. High Dynamic Range Infrared Image Enhancement Algorithm Based on Guided Image Filter[J]. Infrared Technology , 2017, 39(12): 1092-1097.
    [10]LIU Zhe, HAN jiuqiang, HUANG ShiQi. Single Image Super-Resolution Based on Multi-Guided Filtering[J]. Infrared Technology , 2017, 39(10): 920-927.
  • Cited by

    Periodical cited type(8)

    1. 朱亚辉. NSCT框架下动静态联合滤波的红外与可见光图像融合方法. 电脑知识与技术. 2024(08): 1-4 .
    2. 张剑,高云,何栋. 基于离散2-D小波多级分解的电容器外观缺陷视觉检测方法. 电子器件. 2024(05): 1255-1260 .
    3. 陈超洋,姜媛媛. 基于深度图像分解的红外与可见光图像融合. 红外技术. 2024(12): 1362-1370 . 本站查看
    4. 李晨,侯进,李金彪,陈子锐. 基于注意力与残差级联的红外与可见光图像融合方法. 计算机工程. 2022(07): 234-240 .
    5. 李文,叶坤涛,舒蕾蕾,李晟. 基于高斯模糊逻辑和ADCSCM的红外与可见光图像融合算法. 红外技术. 2022(07): 693-701 . 本站查看
    6. 李永萍,杨艳春,党建武,王阳萍. 基于变换域VGGNet19的红外与可见光图像融合. 红外技术. 2022(12): 1293-1300 . 本站查看
    7. 孙学蕾,高宏伟. 改进小波变换的红外与可见光融合方法研究. 沈阳理工大学学报. 2021(03): 19-23+28 .
    8. 赵汝海,汪方斌. 基于灰度和信息熵融合的金属疲劳偏振热像分割算法. 激光与光电子学进展. 2021(24): 260-271 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return