Citation: | ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512. |
[1] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2014: 580-587.
|
[2] |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 779-788.
|
[3] |
LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector[J/OL]. arXiv preprint arXiv, 2017, https://arxiv.org/abs/1712.00960.
|
[4] |
Redmon J, Farhadi A. Yolov3: An incremental improvement[J/OL]. arXiv preprint arXiv, 2018, https://arxiv.org/abs/1804.02767.
|
[5] |
Jocher G, Chaurasia A, Stoken A, et al. ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference[Z/OL]. 2022, https://doi.org/10.5281/ZENODO.6222936.
|
[6] |
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. arXiv preprint arXiv, 2020, https://arxiv.org/abs/2004.10934#:~:text=%EE%80%80YOLOv4%3A%20Optimal%20Speed%20and%20Accuracy%20of%20Object%20Detection%EE%80%81.,features%20operate%20on%20certain%20models%20exclusively%20and%20.
|
[7] |
WANG C Y, Bochkovskiy A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv preprint arXiv, 2022, https://arxiv.org/abs/2207.02696.
|
[8] |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 8759-8768.
|
[9] |
Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]// Conference on Computer Vision & Pattern Recognition. IEEE, 2017: 6517-6525.
|
[10] |
REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. http://pubmed.ncbi.nlm.nih.gov/27295650/
|
[11] |
He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
[12] |
ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586. http://www.xueshufan.com/publication/3194790201
|
[13] |
Veit A, Matera T, Neumann L, et al. Coco-text: Dataset and benchmark for text detection and recognition in natural images[J]. arXiv preprint arXiv, 2016, https://arxiv.org/abs/1601.07140.
|
[14] |
Smith A R. Color gamut transform pairs[J]. ACM Siggraph Computer Graphics, 1978, 12(3): 12-19. DOI: 10.1145/965139.807361
|
[15] |
Zhou Z, Cao J, Wang H, et al. Image denoising algorithm via doubly bilateral filtering[C]// International Conference on Information Engineering and Computer Science. IEEE, 2009: 1-4.
|
[16] |
Hoiem D, Divvala S K, Hays J H. Pascal VOC 2008 challenge[J]. Computer Science, 2009 https://www.semanticscholar.org/paper/Pascal-VOC-2008-Challenge-Hoiem-Divvala/9c327cf1bb8435a8fba27b6ace50bb907078d8d1.
|
[17] |
ZHAO W Y. Discriminant component analysis for face recognition[C]//Proceedings 15th International Conference on Pattern Recognition, IEEE, 2000, 2: 818-821.
|
[18] |
Venkataraman V, FAN G, FAN X. Target tracking with online feature selection in FLIR imagery[C]// IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007: 1-8.
|
[19] |
CHEN R, LIU S, MU J, et al. Borrow from source models: efficient infrared object detection with limited examples[J]. Applied Sciences, 2022, 12(4): 1896. DOI: 10.3390/app12041896
|
[20] |
Kera S B, Tadepalli A, Ranjani J J. A paced multi-stage block-wise approach for object detection in thermal images[J]. The Visual Computer, 2022, https://doi.org/10.1007/s00371-022-02445-x.
|
[21] |
Vadidar M, Kariminezhad A, Mayr C, et al. Robust Environment Perception for Automated Driving: A Unified Learning Pipeline for Visual-Infrared Object Detection[C]// IEEE Intelligent Vehicles Symposium (Ⅳ). IEEE, 2022: 367-374.
|
[1] | GONG Jiamin, ZHANG Lei, LIU Shanghui, JIANG Jiewei, JIN Ku. Image Fusion Based on Simplified Two-Dimensional Kaniadakis Entropy Segmentation Algorithm and Fast Guided Filtering[J]. Infrared Technology , 2025, 47(2): 201-210. |
[2] | JIANG Jiewei, LIU Shanghui, JIN Ku, LIU Haiyang, WEI Xumeng, GONG Jiamin. Infrared and Visible-Light Image Fusion Based on FCM and Guided Filtering[J]. Infrared Technology , 2023, 45(3): 249-256. |
[3] | HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088. |
[4] | CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403. |
[5] | CHENG Tiedong, LU Xiaoliang, YI Qiwen, TAO Zhengliang, ZHANG Zhizhao. Research on Infrared Image Enhancement Method Combined with Single-scale Retinex and Guided Image Filter[J]. Infrared Technology , 2021, 43(11): 1081-1088. |
[6] | HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915. |
[7] | GE Peng, YANG Bo, HAN Qinglin, LIU Peng, CHEN Shugang, HU Douming, ZHANG Qiaoyan. Infrared Image Detail Enhancement Algorithm Based on Hierarchical Processing by Guided Image Filter[J]. Infrared Technology , 2018, 40(12): 1161-1169. |
[8] | GAN Ling, ZHANG Qianwen. Image Fusion Method Combining Non-subsampled Contourlet Transform and Guide Filtering[J]. Infrared Technology , 2018, 40(5): 444-448,454. |
[9] | GE Peng, YANG Bo, MAO Wenbiao, CHEN Shaolin, ZHANG Qiaoyan, HAN Qinglin. High Dynamic Range Infrared Image Enhancement Algorithm Based on Guided Image Filter[J]. Infrared Technology , 2017, 39(12): 1092-1097. |
[10] | LIU Zhe, HAN jiuqiang, HUANG ShiQi. Single Image Super-Resolution Based on Multi-Guided Filtering[J]. Infrared Technology , 2017, 39(10): 920-927. |
1. |
朱亚辉. NSCT框架下动静态联合滤波的红外与可见光图像融合方法. 电脑知识与技术. 2024(08): 1-4 .
![]() | |
2. |
张剑,高云,何栋. 基于离散2-D小波多级分解的电容器外观缺陷视觉检测方法. 电子器件. 2024(05): 1255-1260 .
![]() | |
3. |
陈超洋,姜媛媛. 基于深度图像分解的红外与可见光图像融合. 红外技术. 2024(12): 1362-1370 .
![]() | |
4. |
李晨,侯进,李金彪,陈子锐. 基于注意力与残差级联的红外与可见光图像融合方法. 计算机工程. 2022(07): 234-240 .
![]() | |
5. |
李文,叶坤涛,舒蕾蕾,李晟. 基于高斯模糊逻辑和ADCSCM的红外与可见光图像融合算法. 红外技术. 2022(07): 693-701 .
![]() | |
6. |
李永萍,杨艳春,党建武,王阳萍. 基于变换域VGGNet19的红外与可见光图像融合. 红外技术. 2022(12): 1293-1300 .
![]() | |
7. |
孙学蕾,高宏伟. 改进小波变换的红外与可见光融合方法研究. 沈阳理工大学学报. 2021(03): 19-23+28 .
![]() | |
8. |
赵汝海,汪方斌. 基于灰度和信息熵融合的金属疲劳偏振热像分割算法. 激光与光电子学进展. 2021(24): 260-271 .
![]() |