CAO Yutong, HUAN Kewei, XUE Chao, HAN Fengdi, LI Xiangyang, CHEN Xiao. Infrared and Visible Image Fusion Based on CNN with NSCT[J]. Infrared Technology , 2023, 45(4): 378-385.
Citation: CAO Yutong, HUAN Kewei, XUE Chao, HAN Fengdi, LI Xiangyang, CHEN Xiao. Infrared and Visible Image Fusion Based on CNN with NSCT[J]. Infrared Technology , 2023, 45(4): 378-385.

Infrared and Visible Image Fusion Based on CNN with NSCT

More Information
  • Received Date: August 06, 2021
  • Revised Date: September 12, 2021
  • Traditional infrared and visible fused images suffer from missing details and blurred targets owing to single features in complex environments. This study presents a method for fusing infrared and visible images based on a convolution neural network(CNN) combined with a non-subsampled contourlet transform (NSCT). Firstly, the infrared and visible target feature information is extracted by CNN, and the source image is decomposed by the NSCT at multiple scales to obtain its high-frequency coefficients and low-frequency coefficients. Secondly, the high-frequency sub-bands and low-frequency sub-bands of the source image are fused separately using adaptive fuzzy logic and local variance contrast in combination with the target feature image. Finally, the fused image is obtained by inverse NSCT transformation. We conducted a comparative analysis with five other traditional algorithms. The experimental results show that the proposed method performs better in several objective evaluation indicators.
  • [1]
    MA J Y, MA Yong. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [2]
    董安勇, 杜庆治. 基于卷积神经网络的红外与可见光图像融合[J]. 红外技术, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009

    DONG Anyong, DU Qingzhi. Infrared and visible image fusion based on vonvolutional neural network[J]. Infrared Technology, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009
    [3]
    杨孙运, 奚峥皓, 汪汉东, 等. 基于NSCT和最小化-局部平均梯度的图像融合[J]. 红外技术, 2021, 43(1): 13-20. http://hwjs.nvir.cn/article/id/144252d1-978c-4c1e-85ad-e0b8d5e03bf6

    YANG Sunyun, XI Zhenghao, WANG Handong, et al. Image fusion based on NSCT and minimum-local mean gradient[J]. Infrared Technology, 2021, 43(1): 13-20. http://hwjs.nvir.cn/article/id/144252d1-978c-4c1e-85ad-e0b8d5e03bf6
    [4]
    ZHANG Shuang, LIU Feng. Infrared and visible image fusion based on non-subsampled shearlet transform, regional energy, and co-occurrence filtering[J]. Electronics Letters, 2020, 56(15): 761-764. DOI: 10.1049/el.2020.0557
    [5]
    LIU Yu, LIU Shuping, WANG Zengfu. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. DOI: 10.1016/j.inffus.2014.09.004
    [6]
    CUI Y, DU H, MEI W. Infrared and visible image fusion using detail enhanced channel attention network[J]. IEEE Access, 2019, 7: 182185-182197. DOI: 10.1109/ACCESS.2019.2959034
    [7]
    XIA Jingming, YI Lu. Intelligent fusion of infrared and visible image data based on convolutional sparse representation and improved pulse-coupled neural network[J]. CMC-Computers Materials & Continua, 2021, 67(1): 613-624.
    [8]
    肖中杰. 基于NSCT红外与可见光图像融合算法优化研究[J]. 红外技术, 2017, 39(12): 1127-1130. http://hwjs.nvir.cn/article/id/hwjs201712010

    XIAO Zhongjie. Improved infrared and visible light image fusion algorithm based on NSCT[J]. Infrared Technology, 2017, 39(12): 1127-1130. http://hwjs.nvir.cn/article/id/hwjs201712010
    [9]
    MA Jinlei, ZHOU Zhiqiang. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics and Technology, 2017, 82: 8-17. DOI: 10.1016/j.infrared.2017.02.005
    [10]
    傅志中, 王雪, 李晓峰, 等. 基于视觉显著性和NSCT的红外与可见光图像融合[J]. 电子科技大学学报, 2017, 46(2): 357-362. DOI: 10.3969/j.issn.1001-0548.2017.02.007

    FU Zhizhong, WANG Xue, LI Xiaofeng, et al. Infrared and visible image fusion based on visual saliency and NSCT[J]. Journal of University of Electronic Science and Technology of China, 2017, 46(2): 357-362. DOI: 10.3969/j.issn.1001-0548.2017.02.007
    [11]
    闫利, 向天烛. NSCT域内结合边缘特征和自适应PCNN的红外与可见光图像融合[J]. 电子学报, 2016, 44(4): 761-766. DOI: 10.3969/j.issn.0372-2112.2016.04.002

    YAN Li, XIANG Tianzhu. Fusion of infrared and visible images based on edge feature and adaptive PCNN in NSCT domain[J]. Acta Electronica Sinica, 2016, 44(4): 761-766. DOI: 10.3969/j.issn.0372-2112.2016.04.002
    [12]
    陈震, 杨小平. 基于补偿机制的NSCT域红外与可见光图像融合[J]. 仪器仪表学报, 2016, 37(4): 860-870. DOI: 10.3969/j.issn.0254-3087.2016.04.019

    CHEN Zhen, YANG Xiaoping. Infrared and visible image fusion based on the compensation mechanism in NSCT domain[J]. Chinese Journal of Scientific Instrument, 2016, 37(4): 860-870. DOI: 10.3969/j.issn.0254-3087.2016.04.019
    [13]
    周渝人, 耿爱辉, 张强. 基于压缩感知的红外与可见光图像融合[J]. 光学精密工程, 2015, 23(3): 855-863. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201503032.htm

    ZHOU Yuren, GENG Aihui, ZHANG Qiang. Fusion of infrared and visible images based on compressive sensing[J]. Optics and Precision Engineering, 2015, 23(3): 855-863. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201503032.htm
    [14]
    REN Long, PAN Zhibin. Infrared and visible image fusion based on edge-preserving guided filter and infrared feature decomposition[J]. Signal Processing, 2021, 186: 108108.
    [15]
    FU Zhizhong, WANG Xue. Infrared and visible images fusion based on RPCA and NSCT[J]. Infrared Physics and Technology, 2016, 77: 114-123.
  • Related Articles

    [1]LI Wen, YE Kuntao, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Algorithm Based on Gaussian Fuzzy Logic and Adaptive Dual-Channel Spiking Cortical Model[J]. Infrared Technology , 2022, 44(7): 693-701.
    [2]YANG Sunyun, XI Zhenghao, WANG Handong, LUO Xiao, KAN Xiu. Image Fusion Based on NSCT and Minimum-Local Mean Gradient[J]. Infrared Technology , 2021, 43(1): 13-20.
    [3]QIAN Wei, CHANG Xia, HU Ling. Infrared and Visible Image Pseudo Color Fusion Algorithm Based on Improved Color Transfer Strategy and NSCT[J]. Infrared Technology , 2019, 41(6): 555-560.
    [4]ZHAO Jingchao, LIN Suzhen, LI Dawei, WANG Lifang, YANG Xiaoli. A Comparative Study of Intuitionistic Fuzzy Sets in Multi-band Image Fusion[J]. Infrared Technology , 2018, 40(9): 881-886.
    [5]YANG Guang, ZHANG Xiaohan, ZHANG Jianfeng, HUANG Junhua. A Fusion Method for Hyperspectral Imagery Based on Area Feature Detection Using NSCT[J]. Infrared Technology , 2017, 39(6): 505-511.
    [6]YANG Fengbao, DONG Anran, ZHANG Lei, JI Linna. Infrared Polarization Image Fusion Using the Synergistic Combination of DWT, NSCT and Improved PCA[J]. Infrared Technology , 2017, 39(3): 201-208.
    [7]YUAN Jin-lou, WU Jin, LIU Jin. Image Fusion Based on Compressed Sensing of NSCT and DWT[J]. Infrared Technology , 2015, 37(11): 957-961.
    [8]AN Fu, YANG Feng-bao, NIU Tao. A Fusion Model of Infrared Polarization Images Based on Fuzzy Logic and Feature Difference Driving[J]. Infrared Technology , 2014, (4): 304-310.
    [10]Study on Algorithm of Infrared Image Enhancement Based on Fuzzy Theory[J]. Infrared Technology , 2003, 25(2): 13-14. DOI: 10.3969/j.issn.1001-8891.2003.02.004
  • Cited by

    Periodical cited type(6)

    1. 马庆禄,汪曦洪,马恋,段学锋. 隧道内不均匀照度下无人驾驶视觉融合感知方法. 应用光学. 2025(01): 89-101 .
    2. 王旭升,许亚男,胡石. 基于NSCT和SF-PCNN的红外与可见光图像融合. 电脑知识与技术. 2025(04): 147-151 .
    3. 赵庆典,杨德宏. 基于图像增强和二次非下采样轮廓波变换的红外与可见光图像融合. 激光与光电子学进展. 2024(04): 494-502 .
    4. 李立,易诗,刘茜,程兴豪,王铖. 基于密集残差生成对抗网络的红外图像去模糊. 红外技术. 2024(06): 663-671 . 本站查看
    5. 孙帮勇,施雨含,于涛. 面向伪装目标探测的语义引导偏振光谱图像融合方法. 光学学报. 2024(19): 137-149 .
    6. 郝帅,李彤,马旭,何田,孙曦子,李嘉豪. 基于目标增强与蝴蝶优化的红外与可见光图像融合. 光学精密工程. 2023(23): 3490-3503 .

    Other cited types(1)

Catalog

    Article views (192) PDF downloads (76) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return