SHENG Dajun, ZHANG Qiang. Infrared Armored Target Detection Based on Edge-perception in Deep Neural Network[J]. Infrared Technology , 2021, 43(8): 784-791.
Citation: SHENG Dajun, ZHANG Qiang. Infrared Armored Target Detection Based on Edge-perception in Deep Neural Network[J]. Infrared Technology , 2021, 43(8): 784-791.

Infrared Armored Target Detection Based on Edge-perception in Deep Neural Network

More Information
  • Received Date: May 09, 2020
  • Revised Date: September 02, 2020
  • Automatic detection of armored targets has always been the most challenging problem in the field of infrared guidance. Traditional models address this problem by extracting the low-level features of an object and then training the feature classifier. However, because traditional detection algorithms can not cover all object patterns, the detection performance in practical applications is limited. Inspired by the edge-aware model, this study proposes an improved deep network based on edge perception. The network improves the accuracy of the armored contour through an edge-aware fusion module. By exploiting he advantages of the feature extraction module and context aggregation module, it can better adapt to the shape changes of objects and has high detection and recognition accuracy. The results show that the proposed armored detection network model can effectively improve the accuracy of detection and positioning in infrared images.
  • [1]
    陈国胜, 胡福东, 周成宝, 等. 基于BIRD网络的智能红外全景识别系统[J]. 红外技术, 2018, 40(8): 765-770. http://hwjs.nvir.cn/article/id/hwjs201808008

    CHEN Guosheng, HU Fudong, ZHOU Chenbao, et al. Intelligent infrared panoramic recognition system based on BIRD network[J]. Infrared Technology, 2018, 40(8): 765-770. http://hwjs.nvir.cn/article/id/hwjs201808008
    [2]
    刘博文, 戴永寿, 金久才, 等. 基于空间分布与统计特性的海面远景目标检测方法[J]. 海洋科学, 2018, 42(1): 88-92. DOI: 10.3969/j.issn.1671-6647.2018.01.008

    LIU B, DAI Y, JIN J, et al. Long-range object detection on sea surface based on spatial distribution and statistical characteristics[J]. Marine Science, 2018, 42 (1): 88-92 DOI: 10.3969/j.issn.1671-6647.2018.01.008
    [3]
    骆清国, 赵耀, 俞长贺, 等. 某型装甲车辆红外辐射信号的建模与仿真[J]. 装甲兵工程学院学报, 2019, 33(1): 31-36. DOI: 10.3969/j.issn.1672-1497.2019.01.006

    LUO Q, ZHAO Y, YUC, et al. Modeling and simulation of infrared radiation signal of an armored vehicle[J]. Journal of Armored Force Engineering College, 2019, 33(1): 31-36. DOI: 10.3969/j.issn.1672-1497.2019.01.006
    [4]
    DONG X, HUANG X, ZHENG Y, et al. A novel infrared small moving target detection method based on tracking interest points under complicated background[J]. Infrared Phys. Technol., 2014, 65: 36-42. DOI: 10.1016/j.infrared.2014.03.007
    [5]
    HE Y, LI M, ZHANG J, et al. Small infrared target detection based on low-rank and sparse representation[J]. Infrared Phys. Technol. , 2015, 68: 98-109. DOI: 10.1016/j.infrared.2014.10.022
    [6]
    GUO J, Hsia C, LIU Y, et al. Fast background subtraction based on a multilayer codebook model for moving object detection[C]//IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(10): 1809-1821.
    [7]
    彭博, 臧笛. 基于深度学习的红外车辆识识别方法研究[J]. 计算机科学, 2015, 42(4): 268-273.

    PENG Bo, ZANG Di. Vehicle logo recognition based on deep learning[J]. Computer Science, 2015, 42(4): 268-273.
    [8]
    XIA K J, CHENG J, TAO D, et al. Liver detection algorithm based on an improved deep network combined with edge perception[J]. IEEE ACCESS, 2019, 12: 175135-17514. http://ieeexplore.ieee.org/document/8901142
    [9]
    Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
    [10]
    YU Z, FENG C, LIU M Y, et al. CASENet: Deep category-aware semantic edge detection[C]// Computer Vision & Pattern Recognition of IEEE, 2017: 1761-1770(doi: 10.1109/CVPR.2017.191).
    [11]
    Neubeck A, Gool L V. Efficient non-maximum suppression[C]// International Conference on Pattern Recognition, IEEE Computer Society, 2006: 850-855.
    [12]
    焦安波, 何淼, 罗海波. 一种改进的HED网络及其在边缘检测中的应用[J]. 红外技术, 2019, 41(1): 72-77. http://hwjs.nvir.cn/article/id/hwjs201901011

    JIAO Anbo, HE Miao, LUO Haibo. Research on significant edge detection of infrared image based on deep learning[J]. Infrared Technology, 2019, 41(1): 72-77. http://hwjs.nvir.cn/article/id/hwjs201901011
    [13]
    杨眷玉. 基于卷积神经网络的物体识别研究与实现[D]. 西安: 西安电子科技大学, 2016.

    YANG J. Research and Implementation of Object Detection Based on Convolutional Neural Networks[D]. Xi'an: Xidian University, 2016.
    [14]
    丁文秀, 孙悦, 闫晓星. 基于分层深度学习的鲁棒行人分类[J]. 光电工程, 2015, 42(9): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201509005.htm

    DING W, SUN Y, YAN Xiaoxing. Robust pedestrian classification based on hierarchical deep learning[J]. Opto-Electronic Engineering, 2015, 42(9): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201509005.htm
    [15]
    CHEN S, CHEN Z, XU X, et al. Nv-Net: efficient infrared image segmentation with convolutional neural networks in the low illumination environment[J]. Infrared Physics & Technology, 2020, 105: 103184. http://www.sciencedirect.com/science/article/pii/S1350449519310357
    [16]
    HOSANG J, BENENSON R, SCHIELE B. A convnet for non-maximum suppression[C]//German Conference on Pattern Recognition, Cham: Springer, 2016: 192-204.
    [17]
    REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE Press, 2017: 7263-7271.
    [18]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
    [19]
    HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
    [20]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
  • Related Articles

    [1]CHEN Zhuang, HE Feng, HONG Xiaohang, ZHANG Qiran, YANG Yuyan. Embedded Platform IR Small-target Detection Based on Self-attention and Convolution Fused Architecture[J]. Infrared Technology , 2025, 47(1): 89-96.
    [2]DI Jing, LIANG Chan, REN Li, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism[J]. Infrared Technology , 2024, 46(7): 754-764.
    [3]ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451.
    [4]HE Le, LI Zhongwei, LUO Cai, REN Peng, SUI Hao. Infrared and Visible Image Fusion Based on Dilated Convolution and Dual Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 732-738.
    [5]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [6]CHEN Yanlin, WANG Zhishe, SHAO Wenyu, YANG Fan, SUN Jing. Multi-scale Transformer Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2023, 45(3): 266-275.
    [7]WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177.
    [8]HUANG Linglin, LI Qiang, LU Jinzheng, HE Xianzhen, PENG Bo. Infrared and Visible Image Fusion Based on Multi-scale and Attention Model[J]. Infrared Technology , 2023, 45(2): 143-149.
    [9]CHEN Da, HE Quancai, DI Erzhen, DENG Zaozhu. Application of Partial Differential Segmentation Model with Adaptive Weight in Infrared Image of Substation Equipment[J]. Infrared Technology , 2022, 44(2): 179-188.
    [10]WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178.
  • Cited by

    Periodical cited type(1)

    1. 杨晓超,郝慧良. 矿用电缆放电监测系统研究设计. 中国煤炭. 2024(S1): 406-410 .

    Other cited types(0)

Catalog

    Article views (321) PDF downloads (57) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return