Citation: | LIN Li, LIU Xin, ZHU Junzhen, FENG Fuzhou. Classification of Ultrasonic Infrared Thermal Images Using a Convolutional Neural Network[J]. Infrared Technology , 2021, 43(5): 496-501. |
[1] |
曾平平, 李林升. 基于卷积神经网络的水果图像分类识别研究[J]. 机械设计与研究, 2019, 35(1): 23-26, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY201901010.htm
ZENG Pingping, LI Linsheng. Classification and Recognition of Common Fruit Images Based on Convolutional Neural Network[J]. Machine Design & Research, 2019, 35(1): 23-26, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY201901010.htm
|
[2] |
林明旺. 基于卷积神经网络的鱼类图像识别与分类[J]. 电子技术与软件工程, 2017(6): 82-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRU201706065.htm
LIN Mingwang. Fish image recognition and classification based on convolutional neural network[J]. Electronic Technology & Software Engineering, 2017(6): 82-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRU201706065.htm
|
[3] |
张安安, 黄晋英, 冀树伟, 等. 基于卷积神经网络图像分类的轴承故障模式识别[J]. 振动与冲击, 2020, 39(4): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202004021.htm
ZHANG An'an, HUANG Jinying, JI Shuwei, et al. Bearing fault pattern recognition based on image classification with CNN[J]. Journal of Vibration and Shock, 2020, 39(4): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202004021.htm
|
[4] |
李玉鑑, 张婷, 单传辉, 等. 深度学习卷积神经网络从入门到精通[M]. 北京: 机械工业出版社, 2018.
LI Yujian, ZHANG Ting, SHAN Chuanhui, et al. Deep Learning Convolutional Neural Network From Entry to Mastery[M]. Beijing: China Machine Press, 2018.
|
[5] |
李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508-2515, 2565. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201609029.htm
LI Yandong, HAO Zongbo, LEI Hang. Survey of convolutional neural network[J]. Journal of Computer Applications, 2016, 36(9): 2508-2515, 2565. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201609029.htm
|
[6] |
冯辅周, 张超省, 宋爱斌, 等. 超声红外热像检测中疲劳裂纹的检出概率模型研究[J]. 红外与激光工程, 2016, 45(3): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201603008.htm
FENG Fuzhou, ZHANG Chaosheng, SONG Aibin, et al. Probability of detection model for fatigue crack in ultrasonic infrared imaging[J]. Infrared and Laser Engineering, 2016, 45(3): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201603008.htm
|
[7] |
冯辅周, 张超省, 闵庆旭, 等. 超声红外热像技术中金属平板裂纹的生热特性[J]. 红外与激光工程, 2015, 44(5): 1456-14461. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201505012.htm
FENG Fuzhou, ZHANG Chaosheng, MIN Qingxu, et al. Heating characteristics of metal plate crack in sonic IR imaging[J]. Infrared and Laser Engineering, 2015, 44(5): 1456-14461. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201505012.htm
|
[8] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems, 2012: 1106-1114.
|
[9] |
Szegedy C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8.
|
[10] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[EB/OL]. [2020-6-20]. https://arxiv.org/pdf/1512.03385.pdf.
|
[1] | AI Zhiwei, ZHANG Mufan, ZHU Hua, JI Jianbo, BAI Yuanzhong. Design of Adaptive Inversion Proportional-Integral-Derivative Control System for Fast-Steering Mirror[J]. Infrared Technology , 2024, 46(2): 144-149. |
[2] | LI Shuai, YANG Baoyu, LU Yan. Adaptive PID Control Method Based on Space Optical Mechanical Thermal Model[J]. Infrared Technology , 2021, 43(10): 934-939. |
[3] | TANG Changming, ZHONG Jianfeng, ZHONG Shuncong, CHEN Man, FU Xibin, HUANG Xuebin. Ultrasound Infrared Thermography Defect Recognition Based on Improved Adaptive Genetic Algorithm with Two-Dimensional Maximum Entropy[J]. Infrared Technology , 2020, 42(8): 801-808. |
[4] | HUANG Yu, ZHANG Baohui, WU Jie, CHEN Yingyan, JI Li, WU Xudong, YU Shikong. Adaptive Multipoint Calibration Non-uniformity Correction Algorithm[J]. Infrared Technology , 2020, 42(7): 637-643. |
[5] | LI Zun, SHEN Xiaomeng, MIAO Tongjun. Image Mosaic Based on Contract Threshold Adaptive SIFT Algorithm[J]. Infrared Technology , 2017, 39(10): 946-950. |
[6] | HAO Yu, WANG Xinsai, ZHANG Yanbo, LU Jianfang, HE Jing, LIU Yu. The Infrared Image Enhancement Algorithm Based on Adapted Scale Factor Retinex[J]. Infrared Technology , 2016, 38(10): 855-859. |
[7] | GAO Xiao-dan, WEI Wan-hua. An Adaptive Enhancement Algorithm Based on Gaussian Distribution for Infrared Image[J]. Infrared Technology , 2014, 36(5): 381-383. |
[8] | YU Hong-sheng, JIN Wei-qi. SIFT Key-points Self-adaptive Extraction Algorithm for Video Images[J]. Infrared Technology , 2013, (12): 768-772. |
[9] | LI Xu, ZHAO Wen-jie, YANG Kai-da. OTSU Applied in Image Segmentation Based on Small Targets Pre-detection[J]. Infrared Technology , 2013, (8): 492-496. |
[10] | YAO Qin-fen, SUI Xiu-bao. An Adaptive Contrast Enhancement Algorithm for Infrared Image[J]. Infrared Technology , 2009, 31(9): 541-544. DOI: 10.3969/j.issn.1001-8891.2009.09.011 |